Bài 4 trang 99 SGK Hình học 12

Bình chọn:
3.3 trên 3 phiếu

Giải bài 4 trang 99 SGK Hình học 12. Trong không gian Oxyz, cho hai điểm A(1 ; 2 ;-1), B(7 ; -2 ; 3)

Đề bài

Trong không gian \(Oxyz\), cho hai điểm \(A(1 ; 2 ;-1), B(7 ; -2 ; 3)\) và đường thẳng \(d\) có phương trình: \(\left\{ \matrix{x = - 1 + 3t \hfill \cr y = 2 - 2t \hfill \cr z = 2 + 2t. \hfill \cr} \right.\)

a) Chứng minh rằng hai đường thẳng \(d\) và \(AB\) cùng nằm trong một mặt phẳng.

b) Tìm điểm \(I\) trên \(d\) sao cho \(AI + BI\) nhỏ nhất.

Phương pháp giải - Xem chi tiết

a) Chứng minh AB // d. Suy ra AB và d cùng thuộc một mặt phẳng.

b) Gọi A' là điểm đối xứng với A qua d, khi đó ta có IA = IA' \( \Rightarrow IA + IB = IA' + IB \ge A'B\).

Dấu bằng xảy ra \( \Leftrightarrow I = d \cap A'B\).

Lời giải chi tiết

a) Đường thẳng \(AB\) có vectơ chỉ phương \(\overrightarrow {AB} =(6; -4; 4)\)

Đường thẳng \((d)\) có vectơ chỉ phương \(\overrightarrow a  = (3; -2; 2)\)

\( \Rightarrow \) \(\overrightarrow {AB}  = 2\overrightarrow a \)  và  \(A ∉ (d)\)

\( \Rightarrow  AB\) và \((d)\) song song với nhau.

\( \Rightarrow \) Hai đường thẳng \((d)\) và \(AB\) cùng thuộc một mặt phẳng.

b) Gọi \(A'\) là điểm đối xứng của điểm \(A\) qua phép đối xứng qua đường thẳng \(d\) thì điểm \(I\) cần tìm là giao điểm của đường thẳng \(A'B\) và đường thẳng \(d\).

Trong câu a) ta chứng minh được \(AB // d\), từ đó suy ra \(I\) chính là giao điểm của đường thẳng \(d\) với mặt phẳng trung trực của đoạn thẳng \(AB\).

Gọi \(M\) là trung điểm của \(AB\) thì \(M(4; 0; 1)\).

Phương trình mặt phẳng trung trực của \(AB\):

\(3(x - 4) - 2(y - 0) + 2(z - 1) = 0\) \( \Rightarrow  3x - 2y + 2z - 14 = 0\)

Phương trình tham số của \((d)\):\(\left\{ \matrix{
x = - 1 + 3t \hfill \cr 
y = 2 - 2t \hfill \cr 
z = 2 + 2t \hfill \cr} \right.\)

Giá trị tham số ứng với giao điểm \(I \)của \((d)\) và mặt phẳng trung trực của \(AB\) là nghiệm của phương trình:

\(3( -1 + 3t) - 2(2 - 2t) + 2(2 + 2t) - 14 = 0\) \( \Rightarrow  t = 1\)

Từ đây ta được \(I (2; 0; 4)\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - HÌNH HỌC 12

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu