Bài 12 trang 101 SGK Hình học 12

Bình chọn:
3.3 trên 4 phiếu

Giải bài 12 trang 101 SGK Hình học 12. Trong không gian Oxyz cho bốn điểm A(3 ; -2 ; -2), B(3 ; 2 ; 0), C(0 ; 2 ; 1) và D(-1 ; 1 ; 2)

Đề bài

Trong không gian \(Oxyz\) cho bốn điểm \(A(3 ; -2 ; -2), B(3 ; 2 ; 0), C(0 ; 2 ; 1)\) và \(D(-1 ; 1 ; 2)\)

a) Viết phương trình mặt phẳng \((BCD)\). Suy ra \(ABCD\) là một tứ diện.

b) Viết phương trình mặt cầu \((S)\) tâm \(A\) và tiếp xúc với mặt phẳng \((BCD)\).

c) Tìm toạ độ tiếp điểm của \((S)\) và mặt phẳng \((BCD)\).

Phương pháp giải - Xem chi tiết

a) Mặt phẳng (BCD) đi qua B và nhận \(\overrightarrow n  = \left[ {\overrightarrow {BC} ;\overrightarrow {BD} } \right]\) là 1 VTPT.

- Chứng minh điểm A không thuộc mặt phẳng (BCD), từ đó suy ra ABCD là tứ diện.

b) Mặt cầu tâm \(A\), tiếp xúc với mp \((BCD)\) có bán kính bằng khoảng cách từ \(A\) đến mp \((BCD)\)

Sử dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng.

c) H là hình chiếu của điểm A trên mặt phẳng (BCD).

- Viết phương trình đường thẳng d đi qua A và vuông góc với mặt phẳng BCD.

- Tìm giao điểm của đường thẳng d và mặt phẳng (BCD). Khi đó giao điểm trên chính là điểm H cần tìm.

Lời giải chi tiết

a) Ta có: \(\overrightarrow {BC}  = (-3; 0; 1)\), \(\overrightarrow {BD}  = (-4; -1; 2)\)

Gọi \(\overrightarrow n \) là vectơ pháp tuyến của mp \((BCD)\) thì:

\(\overrightarrow n  = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = (1;2;3)\)

Mặt phẳng \((BCD)\) đi qua \(B\) và có vectơ pháp tuyến \(\overrightarrow n  = (1; 2; 3)\) có phương trình:

\(1(x - 3) + 2(y - 2) + 3(z - 0) = 0\)

\(\Leftrightarrow x + 2y + 3z - 7 = 0\)

Thay toạ độ điểm \(A\) vào phương trình của mp \((BCD)\), ta có:

\(3 + 2(-2) + 3(-2) - 7 = -14 ≠ 0\)

Vậy \(A ∉ (BCD)\) \( \Rightarrow \)bốn điểm \(A, B, C, D\) không đồng phẳng. Vậy ABCD là một tứ diện.

b) Mặt cầu tâm \(A\), tiếp xúc với mp \((BCD)\) có bán kính bằng khoảng cách từ \(A\) đến mp \((BCD)\): \(r = d (A,(BCD))\) =\({{\left| { - 14} \right|} \over {\sqrt {{1^2} + {2^2} + {3^2}} }} = \sqrt {14} \)

Phương trình mặt cầu cần tìm: \((S): (x - 3)^2 + (y + 2)^2 + (z + 2)^2 = 14\)

c) Phương trình đường thẳng \((d)\) đi qua \(A\) và vuông góc với mp \((BCD)\) là: \(\left\{ \matrix{x = 3 + t \hfill \cr y = - 2 + 2t \hfill \cr z = - 2 + 3t \hfill \cr} \right.\)

Gọi \(H = d \cap \left( {BCD} \right) \Rightarrow H\left( {3 + t; - 2 + 2t; - 2 + 3t} \right)\)

Thay tọa độ điểm H vào phương trình của \((BCD)\), ta có:

\((3 + t) + 2(-2 + 2t) + 3(-2 + 3t) - 7 = 0 \)\( \Leftrightarrow t = 1 \Rightarrow H\left( {4;0;1} \right)\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - HÌNH HỌC 12

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu