Bài 10 trang 100 SGK Hình học 12

Bình chọn:
3.7 trên 3 phiếu

Giải bài 10 trang 100 SGK Hình học 12. Trong không gian Oxyz cho đường thẳng d.a) Tìm toạ độ giao điểm A của d và (α).

Đề bài

Trong không gian \(Oxyz\) cho đường thẳng \(d\):

\(\left\{ \matrix{
x = 1 - 2t \hfill \cr 
y = 2 + t \hfill \cr 
z = 3 - t \hfill \cr} \right.\)và mặt phẳng \((α) : 2x + y + z = 0\).

a) Tìm toạ độ giao điểm \(A\) của \(d\) và \((α)\).

b) Viết phương trình mặt phẳng \((β)\) qua \(A\) và vuông góc với \( d\).

Phương pháp giải - Xem chi tiết

a) Tham số hóa tọa độ điểm A theo tham số \(t\), thay tọa độ điểm A vào phương trình mặt phẳng \(\alpha\), tìm \(t\) và sauy ra tọa độ điểm \(A\).

b) Mặt phẳng \(\beta\) đi qua A và nhận VTCP của đường thẳng \(d\) là VTPT. Viết phương trình mặt phẳng \(beta\) khi biết một điểm đi qua và VTPT.

Lời giải chi tiết

\(A \in d \Rightarrow A\left( {1 - 2t;2 + t;3 - t} \right)\)

Thay tọa độ điểm \(A\) vào phương trình của mặt phẳng \((α)\), ta có:

\(2(1 - 2t) + (2 + t) + (3 - t) = 0 \Rightarrow t = {7 \over 4}  \)

\(\Rightarrow A\left( { - \frac{5}{2};\frac{{15}}{4};\frac{5}{4}} \right)\)

b) Đường thẳng \((d)\) có vectơ chỉ phương \(\overrightarrow a  = (-2; 1; -1)\). Mặt phẳng \((β)\) vuông góc với \((d)\), nhận \(\overrightarrow a \) làm vectơ pháp tuyến.

Phương trình của \((β)\) là:

\( - 2\left( {x + {{10} \over 4}} \right) + 1.\left( {y - {{15} \over 4}} \right) - 1.\left( {z - {5 \over 4}} \right) = 0\)

\( \Leftrightarrow 4x - 2y + 2z + 15 = 0\)

loigiaihay.com

                                    

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - HÌNH HỌC 12

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu