Bài 14 trang 101 SGK Hình học 12

Bình chọn:
3 trên 5 phiếu

Giải bài 14 trang 101 SGK Hình học 12. Trong không gian cho ba điểm A, B, C. Xác định điểm G sao cho

Đề bài

Trong không gian cho ba điểm \(A, B, C\).

a) Xác định điểm \(G\) sao cho \(\overrightarrow {GA}  + 2\overrightarrow {GB}  - 2\overrightarrow {GC}  = 0.\)

b) Tìm tập hợp các điểm \(M\) sao cho \(MA^2 + 2MB^2 - 2MC^2 = k^2\), với \(k\) là hằng số.

Phương pháp giải - Xem chi tiết

a) Biến đổi đẳng thức vector trong câu a) theo những điểm cố định và suy ra vi trí của điểm G.

b) Sử dụng công thức ba điểm, chèn điểm G vào tất cả các vector \(\overrightarrow {MA} ;\overrightarrow {MB} ;\overrightarrow {MC} \), biến đổi và kết luận.

Lời giải chi tiết

a) Ta có

\(\begin{array}{l}
\,\,\,\,\,\,\,\overrightarrow {GA} + 2\overrightarrow {GB} - 2\overrightarrow {GC} = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {GA} + 2\left( {\overrightarrow {GB} - \overrightarrow {GC} } \right) = \overrightarrow 0 \\
\Leftrightarrow \overrightarrow {GA} + 2\overrightarrow {CB} = 0\\
\Leftrightarrow \overrightarrow {GA} = 2\overrightarrow {BC}
\end{array}\)

Gọi \(D\) là điểm mà \(\overrightarrow {DC}  = 2\overrightarrow {BC} \) tức là điểm \(B\) là trung điểm của \(CD\) \( \Rightarrow \overrightarrow {GA}  = \overrightarrow {DC} \)

Vậy \(G\) là đỉnh thứ tư của hình bình hành \(ACDG\).

b) Gọi \(G\) là điểm trong câu a): \(\overrightarrow {GA}  + 2\overrightarrow {GB}  - 2\overrightarrow {GC}  = \overrightarrow 0 \).

Ta có: \(M{A^2} = {\overrightarrow {MA} ^2}= {(\overrightarrow {MG}  + \overrightarrow {GA} )^2}\)

\(= M{G^2} + G{A^2} + 2\overrightarrow {MG} .\overrightarrow {GA} \);

\(M{B^2} = {\overrightarrow {MB} ^2} = {(\overrightarrow {MG}  + \overrightarrow {GB} )^2}\)

\(= M{G^2} + G{B^2} + 2\overrightarrow {MG} .\overrightarrow {GB} \);

\(M{C^2} = {\overrightarrow {MC} ^2} = {(\overrightarrow {MG}  + \overrightarrow {GC} )^2} \)

\(= M{G^2} + G{C^2} + 2\overrightarrow {MG} .\overrightarrow {GC} \).

Từ đó \(MA^2 +2 MB^2 -2 MC^2 = k^2\)

\( \Leftrightarrow M{G^2} + G{A^2} + 2G{B^2} - 2G{C^2} \)

\(+ 2\overrightarrow {MG} (\overrightarrow {GA}  + 2\overrightarrow {GB}  - 2\overrightarrow {GC} ) = {k^2}\)

\( \Leftrightarrow M{G^2} = {k^2} - (G{A^2} + 2G{B^2} - 2G{C^2})\) 

(Vì \(\overrightarrow {GA}  + 2\overrightarrow {GB}  - 2\overrightarrow {GC}  = \overrightarrow 0 \)).

Do vậy:

Nếu \(k^2 - (GA^2 + 2GB^2 - 2GC^2) = r^2 > 0\) thì tập hợp các điểm M là mặt cầu tâm G bán kính r.

Nếu \(k^2 - (GA^2 + 2GB^2 - 2GC^2) = r^2 =0\) thì tập hợp M chính là điểm G.

Nếu \(k^2 - (GA^2 + 2GB^2 - 2GC^2) = r^2 < 0\) thì tập hợp các điểm M chính là tập rỗng.

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - ÔN TẬP CUỐI NĂM - HÌNH HỌC 12

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu