Giải bài 4 trang 91 SGK Giải tích 12>
Nghiệm của bất phương trình là g(x) > 0 là:
Đề bài
Cho hàm số \(g(x) = {\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 7} \right)\) . Nghiệm của bất phương trình \(g(x) > 0\) là:
(A) \(x > 3\)
(B) \(x < 2\) hoặc \(x > 3\)
(C) \(2 < x < 3\)
(D) \(x < 2\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Cách 1: Thử và loại các đáp án.
Cách 2: Giải phương trình logarit cơ bản: \({\log _a}f\left( x \right) > b \Leftrightarrow \left\{ \begin{array}{l}0 < a < 1\\0 < f\left( x \right) < {a^b}\end{array} \right.\)
Lời giải chi tiết
Cách 1:
Vì \(g(0) = {\log _{{1 \over 2}}}7 < 0\) nên (B) và (D) sai.
Mặt khác \(g(4) = {\log _{{1 \over 2}}}3 < 0\) nên (A) sai
Do đó chọn (C).
Cách 2:
\({\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 7} \right) > 0\) \(\Leftrightarrow 0 < {x^2} - 5x + 7 < {\left( {\dfrac{1}{2}} \right)^0} = 1\) \(\Leftrightarrow {x^2} - 5x + 7 < 1\)
Mà: \({x^2} - 5x + 7 =\) \( {x^2} - 2.\dfrac{5}{2}.x + \dfrac{{25}}{4} + \dfrac{3}{4} \) \(= {\left( {x - \dfrac{5}{2}} \right)^2} + \dfrac{3}{4} > 0\)
\(\Leftrightarrow {x^2} - 5x + 6 < 0\) \(\Leftrightarrow 2 < x < 3.\)
Chọn đáp án (C).
Loigiaihay.com
- Giải bài 5 trang 91 SGK Giải tích 12
- Giải bài 6 trang 91 SGK Giải tích 12
- Giải bài 7 trang 91 SGK Giải tích 12
- Tổng hợp lí thuyết chương 2
- Giải bài 3 trang 91 SGK Giải tích 12
>> Xem thêm