Bài 3 trang 18 SGK Giải tích 12

Bình chọn:
4.2 trên 18 phiếu

Giải bài 3 trang 18 SGK Giải tích 12. Chứng minh rằng

Đề bài

Chứng minh rằng hàm số \(y=\sqrt{\left | x \right |}\) không có đạo hàm tại \(x = 0\) nhưng vẫn đạt cực tiểu tại điểm đó.

Phương pháp giải - Xem chi tiết

*) Để chứng minh hàm số không có đạo hàm tại điểm \(x=0\) ta sử dụng cách tính đạo hàm tại một điểm bằng định nghĩa:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) (nếu tồn tại giới hạn).

*) Để chứng minh hàm số đạt cực tiểu tại \(x=0\) ta sử dụng định nghĩa cực trị:

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên khoảng \(\left( {a;b} \right)\) (có thể a là \( - \infty \) và b là \( + \infty \)) và điểm \({x_0} \in \left( {a;b} \right)\).

a) Nếu tồn tại số \(h>0\) sao cho \(f\left( x \right) < f\left( {{x_0}} \right)\) với mọi \(x \in \left( {{x_0} - h;{x_0} + h} \right)\) và \(x \ne {x_0}\) thì ta nói hàm số \(f\left( x \right)\) đạt cực đại  tại \({x_0}\).

b) Nếu tồn tại số \(h>0\) sao cho \(f\left( x \right) > f\left( {{x_0}} \right)\) với mọi \(x \in \left( {{x_0} - h;{x_0} + h} \right)\) và \(x \ne {x_0}\) thì ta nói hàm số \(f\left( x \right)\) đạt cực tiểu  tại \({x_0}\).

Lời giải chi tiết

*) Chứng minh hàm số không có đạo hàm tại điểm \(x=0\):

\(\begin{array}{l}y = f\left( x \right) = \sqrt {\left| x \right|} = \left\{ \begin{array}{l}\sqrt x \,\,khi\,\,x \ge 0\\\sqrt { - x} \,\,khi\,\,x < 0\end{array} \right.\\
\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt x }}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\sqrt x }} = + \infty \\
\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt { - x} }}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt { - x} }}{{ - {{\left( {\sqrt { - x} } \right)}^2}}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{ - 1}}{{\sqrt { - x} }} = - \infty \\
\Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} \ne \mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}
\end{array}\)

\(\Rightarrow\) Không tồn tại đạo hàm của hàm số đã cho tại \(x = 0\).

*) Chứng minh hàm số đạt cực tiểu tại \(x=0\) :

Với \(h>0\) là một số thực bất kì ta có:

\(\begin{array}{l}f\left( x \right) = \sqrt {\left| x \right|} \ge 0\,\,\forall x \in \left( { - h;h} \right)\\f\left( 0 \right) = 0\\\Rightarrow f\left( x \right) \ge f\left( 0 \right)\,\,\,\forall x \in \left( { - h;h} \right)\end{array}\)

Theo định nghĩa điểm cực trị của hàm số ta kết luận \(x=0\) là điểm cực tiểu của hàm số \(y = f\left( x \right) = \sqrt {\left| x \right|} \).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan