Bài 1 trang 18 SGK Giải tích 12


Giải bài 1 trang 18 SGK Giải tích 12. Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm số sau:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm số sau :

\(y{\rm{ }} = {\rm{ }}2{x^{3}} + {\rm{ }}3{x^2}-{\rm{ }}36x{\rm{ }}-{\rm{ }}10\) ;

Phương pháp giải:

Quy tắc 1 tìm cực trị của hàm số:

Bước 1: Tìm tập xác định.

Bước 2: Tính \(f'\left( x \right)\). Tìm các điểm mà tại đó \(f'\left( x \right)\) bằng 0 hoặc \(f'\left( x \right)\) không xác định.

Bước 3: Lập bảng biến thiên.

Bước 4: Từ bảng biến thiên suy ra các điểm cực trị.

Lời giải chi tiết:

Tập xác định: \(D = \mathbb R\)

\(\eqalign{
& y' = 6{{\rm{x}}^2} + 6{\rm{x}} - 36;y' = 0 \cr 
& \Leftrightarrow \left[ \matrix{
x = 2\Rightarrow {y = - 54}  \hfill \cr 
x = - 3 \Rightarrow  {y = 71} \hfill \cr} \right. \cr} \)

\(\begin{array}{l}y' < 0 \Leftrightarrow x \in \left( { - 3;2} \right)\\y' > 0 \Leftrightarrow x \in \left( { - \infty ; - 3} \right) \cup \left( {2; + \infty } \right)\end{array}\)

\(\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty ;\,\,\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty \)

Bảng biến thiên:

Hàm số đạt cực đại tại \(x = -3\) và  \(y\) \(= 71\)

Hàm số đạt cực tiểu tại \(x = 2\) và \(y\)CT \(= -54\)

LG b

\(y{\rm{ }} = {\rm{ }}x{^4} + {\rm{ }}2{x^2}-{\rm{ }}3\) ;

Lời giải chi tiết:

Tập xác định: \(D =\mathbb R\)

\(y' = 4{{\rm{x}}^3} + 4{\rm{x}} = 4{\rm{x}}\left( {{x^2} + 1} \right)\);

\(y' = 0 \Leftrightarrow x = 0\Rightarrow {y =  - 3}\)

\(\begin{array}{l}y' > 0 \Rightarrow x > 0\\y' < 0 \Rightarrow x < 0\end{array}\)

\(\mathop {\lim }\limits_{x \to  - \infty } y =  + \infty ;\,\,\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty \)

Bảng biến thiên:

Hàm số đạt cực tiểu tại \(x = 0\) và \(y\)CT \(= -3\)

LG c

\(y = x + {1 \over x}\)

Lời giải chi tiết:

Tập xác định: \(D = \mathbb R\)\ { 0 }

\(\eqalign{
& y' = 1 - {1 \over {{x^2}}} = {{{x^2} - 1} \over {{x^2}}};y' = 0 \cr 
& \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow \left[ \matrix{
x = 1 \Rightarrow {y = 2}  \hfill \cr 
x = - 1 \Rightarrow {y = - 2}  \hfill \cr} \right. \cr}\)

\(\begin{array}{l}y' < 0 \Leftrightarrow x \in \left( { - 1;1} \right)\\y' > 0 \Leftrightarrow x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\end{array}\)

\(\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty ;\,\,\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty \)

\(\mathop {\lim }\limits_{x \to {0^ - }} y =  - \infty ;\,\,\mathop {\lim }\limits_{x \to {0^ + }} y =  + \infty \)

Bảng biến thiên

Hàm số đạt cực đại tại \(x = -1\), \(y\) \(= -2\)

Hàm số đạt cực tiểu tại \(x = 1\), \(y\)CT  \(= 2\)

LG d

 \(y{\rm{ }} = {\rm{ }}{x^3}{\left( {1{\rm{ }}-{\rm{ }}x} \right)^{2}}\);

Lời giải chi tiết:

Tập xác định \(D = \mathbb R\)

\(\begin{array}{l}
y' = \left( {{x^3}} \right)'{\left( {1 - x} \right)^2} + {x^3}\left[ {{{\left( {1 - x} \right)}^2}} \right]'\\
= 3{x^2}{\left( {1 - x} \right)^2} + {x^3}.2\left( {1 - x} \right)\left( {1 - x} \right)'\\
= 3{x^2}{\left( {1 - x} \right)^2} + 2{x^3}\left( {1 - x} \right)\left( { - 1} \right)\\
= 3{x^2}{\left( {1 - x} \right)^2} - 2{x^3}\left( {1 - x} \right)\\
= {x^2}\left( {1 - x} \right)\left[ {3\left( {1 - x} \right) - 2x} \right]\\
= {x^2}\left( {1 - x} \right)\left( {3 - 3x - 2x} \right)\\
= {x^2}\left( {1 - x} \right)\left( {3 - 5x} \right)
\end{array}\)

\(\eqalign{
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 1\Rightarrow {y = 0}  \hfill \cr 
x = {3 \over 5}\Rightarrow  {y = {{108} \over {3125}}}  \hfill \cr 
x = 0 \Rightarrow {y = 0}\hfill \cr} \right. \cr} \)

\(\begin{array}{l}y' < 0 \Leftrightarrow x \in \left( {\frac{3}{5};1} \right)\\y' > 0 \Leftrightarrow x \in \left( { - \infty ;\frac{3}{5}} \right) \cup \left( {1; + \infty } \right)\\\mathop {\lim }\limits_{x \to -\infty } y = - \infty ;\,\,\mathop {\lim }\limits_{x \to + \infty } y = + \infty \end{array}\)

Bảng biến thiên:

Hàm số đạt cực đại tại \(x = {3 \over 5};y = {{108} \over {3125}}\)

Hàm số đạt cực tiểu tại \(x = 1\), \(y\)CT =\( 0\)

LG e

\(y = \sqrt {{x^2} - x + 1}\)

Lời giải chi tiết:

Vì  \(x^2\) –\( x + 1 > 0, ∀  ∈ \mathbb R\) nên tập xác định : \(D = \mathbb R\)

\(y' = {{2{\rm{x}} - 1} \over {2\sqrt {{x^2} - x + 1} }};y' = 0 \Leftrightarrow x = {1 \over 2}\Rightarrow {y = {{\sqrt 3 } \over 2}}\)

\(\begin{array}{l}y' > 0 \Leftrightarrow x > \frac{1}{2};\,\,y' < 0 \Leftrightarrow x < \frac{1}{2}\\
\mathop {\lim }\limits_{x \to - \infty } y = + \infty ,\,\,\mathop {\lim }\limits_{x \to + \infty } y = + \infty \end{array}\)

Bảng biến thiên:

Hàm số đạt cực tiểu tại \(x = {1 \over 2};{y_{CT}} = {{\sqrt 3 } \over 2}\)

Loigiaihay.com


Bình chọn:
4.4 trên 109 phiếu

Các bài liên quan: - Bài 2. Cực trị của hàm số

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài