
Đề bài
Chứng minh hàm số \(y = |x|\) không có đạo hàm tại \(x = 0.\) Hàm số có đạt cực trị tại điểm đó không ?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Hàm số k có đạo hàm: \({\lim _{x \to {0^ + }}}y' \ne {\lim _{x \to {0^ - }}}y'\)
+ Hàm số có cực trị: quan sát từ đồ thị
Lời giải chi tiết
\(y = \,|x|\, = \left\{ \matrix{
x;\,\,x \ge 0 \hfill \cr
- x;\,\,x < 0 \hfill \cr} \right.\)
Khi đó:
\(y' = \left\{ \matrix{
1;\,\,x \ge 0 \hfill \cr
- 1;\,\,x < 0 \hfill \cr} \right.\)
Ta có: \({\lim _{x \to {0^ + }}}y' = 1\, \ne - 1 = {\lim _{x \to {0^ - }}}y'\)
Vậy không tồn tại đạo hàm của hàm số tại \(x = 0.\)
Nhưng dựa vào đồ thị của hàm số \(y = |x|.\) Ta có hàm số đạt cực trị tại \(x = 0.\)
Loigiaihay.com
Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm số sau:
Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm số sau:
Áp dụng quy tắc II, hãy tìm các điểm cực trị của hàm số sau:
Chứng minh rằng
Chứng minh rằng với mọi giá trị của tham số m, hàm số:
Tìm a và b để các cực trị của hàm số:
Xác định giá trị của tham số m
Sử dụng đồ thị, hãy xem xét các hàm số sau đây có cực trị hay không....
Giả sử f(x) đạt cực đại tại xo. Hãy chứng minh khẳng định 3 trong chú ý trên bằng cách xét giới hạn tỉ số...
Dựa vào đồ thị (H.7, H.8), hãy chỉ ra các điểm tại đó mỗi hàm số sau có giá trị lớn nhất (nhỏ nhất)...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: