Bài 17 trang 198 Sách bài tập (SBT) Toán Hình học 10


Trong mặt phẳng tọa độ Oxy, cho hai đường tròn

Trong mặt phẳng tọa độ Oxy, cho hai đường tròn:

(C1) : \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 4\)

và (C2) : \({\left( {x - 5} \right)^2} + {\left( {y - 3} \right)^2} = 16\)

a) Chứng minh rằng hai đường tròn (C1) , (C2)  cắt nhau ;

b) Tìm tọa độ giao điểm của hai tiếp tuyến chung của (C1) và (C2).

Gợi ý làm bài

(Xem hình 3.40)

a) (C1) có tâm I(2 ; 2) và bán kính \({R_1} = 2\)

   (C2) có tâm J(5 ; 3) và bán kính \({R_2} = 4\)

Ta có:

\(IJ = \sqrt {{{\left( {5 - 2} \right)}^2} + {{\left( {3 - 2} \right)}^2}}  = \sqrt {10} .\)

Do: \({R_2} - {R_1} < IJ < {R_2} + {R_1}\)

Nên (C1)(C2) cắt nhau tại hai điểm phân biệt.

b) Gọi \(\Delta \) và \(\Delta' \) là hai tiếp tuyến chung của (C1)(C2) . \(\Delta \) tiếp xúc với (C1)(C2) lần lượt tại A, B. \(\Delta' \) tiếp xúc với (C1)(C2) lần lượt tại A', B'.

Ta có:

\(\left\{ \matrix{
d(I,\Delta ) = d(I,{\Delta'}) = {R_1} = 2 \hfill \cr
d(J,\Delta ) = d(J,{\Delta'}) = {R_2} = 4 \hfill \cr} \right. \Rightarrow IJ,\Delta \) và \(\Delta' \) đồng quy tại M.

\(\eqalign{
& {{JM} \over {IM}} = {{JB} \over {IA}} = {{{R_2}} \over {{R_1}}} = 2 \cr
& \Rightarrow \overrightarrow {JM} = 2\overrightarrow {JI} \cr
& \Rightarrow \left\{ \matrix{
{x_M} - 5 = 2.\left( {2 - 5} \right) \hfill \cr
{y_M} - 3 = 2.(2 - 3 \hfill \cr} \right. \cr
& \Rightarrow \left\{ \matrix{
{x_M} = - 1 \hfill \cr
{y_M} = 1. \hfill \cr} \right. \cr} \)

Vậy ta được M(-1 ; 1).

Sachbaitap.net


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.