Bài 16 trang 198 Sách bài tập (SBT) Toán Hình học 10>
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật có một đỉnh là O
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật có một đỉnh là O, diện tích bằng 12 và đường tròn ngoại tiếp (T) của có có phương trình là \({\left( {x - {5 \over 2}} \right)^2} + {y^2} = {{25} \over 4}\). Tìm tọa độ các đỉnh còn lại của hình chữ nhật.
Gợi ý làm bài
(Xem hình 3.39)
Đường tròn (T) có tâm \(I\left( {{5 \over 2};0} \right)\) và bán kính \(R = {5 \over 2}\).
\(\overrightarrow {OB} = 2\overrightarrow {OI} = \left( {5;0} \right)\) suy ra B(5 ; 0). Đặt A(x ; y) ta có hệ phương trình:
\(\eqalign{
& \left\{ \matrix{
{\left( {x - {5 \over 2}} \right)^2} + {y^2} = {{25} \over 4} \hfill \cr
\sqrt {{x^2} + {y^2}} .\sqrt {{{\left( {5 - x} \right)}^2} + {y^2}} = 12 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{y^2} = {{25} \over 4} - {\left( {x - {5 \over 2}} \right)^2} \hfill \cr
\left[ {{x^2} + 5x - {x^2}} \right]\left[ {{{\left( {5 - x} \right)}^2} + 5x - {x^2}} \right] = 144 \hfill \cr} \right. \cr} \)
\( \Leftrightarrow \left\{ \matrix{
{y^2} = 5x - {x^2} \hfill \cr
\left[ \matrix{
x = {9 \over 5} \hfill \cr
y = {{16} \over 5} \hfill \cr} \right. \hfill \cr} \right.\)
Vậy ta được
\(A\left( {{9 \over 5};{{12} \over 5}} \right)\), \(C\left( {{6 \over 5};{{ - 12} \over 5}} \right)\)
Hoặc \(A\left( {{9 \over 5};{{ - 12} \over 5}} \right)\), \(C\left( {{6 \over 5};{{12} \over 5}} \right)\)
Sachbaitap.net

