Bài 15 trang 198 Sách bài tập (SBT) Toán Hình học 10


Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có AB: 3x + 5y - 33 = 0; đường cao  AH: 7x + y - 13 = 0; trung tuyến BM: x + 6y - 24 = 0 (M là trung điểm của AC). Tìm phương trình các cạnh còn lại của tam giác.

Gợi ý làm bài

(Xem hình 3.38)

Tọa độ điểm A là nghiệm của hệ phương trình:

\(\left\{ \matrix{
3x + 5y - 33 = 0\,\,\,\,\,\,\,(AB) \hfill \cr
7x + y - 13 = 0\,\,\,\,\,\,\,\,\,(AH). \hfill \cr} \right.\)

Vậy A(1 ; 6)

Tọa độ điểm B là nghiệm của hệ phương trình:

\(\left\{ \matrix{
3x + 5y - 33 = 0\,\,\,\,\,\,\,(AB) \hfill \cr
x + 6y - 24 = 0\,\,\,\,\,\,\,\,\,(BM) \hfill \cr} \right.\)

Vậy B(6 ; 3).

Đặt C(x;y) ta suy ra trung điểm M của AC có tọa độ \(M\left( {{{x + 1} \over 2};{{y + 6} \over 2}} \right).\)

Ta có: \(\overrightarrow {BC}  = \left( {x - 6;y - 3} \right)\)

\({\overrightarrow u _{AH}} = (1; - 7)\)

Ta có: \(\left\{ \matrix{
M \in BM \hfill \cr
\overrightarrow {BC} .{\overrightarrow u _{AH}} = 0 \hfill \cr} \right.\)

Suy ra tọa độ điểm C là nghiệm của hệ phương trình:

\(\left\{ \matrix{
\left( {{{x + 1} \over 2}} \right) + 6\left( {{{y + 6} \over 2}} \right) \hfill \cr
x - 6 - 7(y - 3) = 0 \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{
x + 6y - 11 = 0 \hfill \cr
x - 7y + 15 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 1 \hfill \cr
y = 2. \hfill \cr} \right.\)

Vậy C(-1 ; 2).

Phương trình cạnh BC: x - 7y + 15 = 0

Phương trình cạnh AC: 2x - y + 4 = 0.

Sachbaitap.net


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!