Bài 14 trang 198 Sách bài tập (SBT) Toán Hình học 10


Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật biết tọa độ hai đỉnh đối diện là

Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật biết tọa độ hai đỉnh đối diện là (1 ; -5) và (6 ; 2), phương trình của một đường chéo là 5x + 7y - 7 = 0. Tìm tọa độ các đỉnh còn lại của hình chữ nhật.

Gợi ý làm bài

(Xem hình 3.37)

Đặt A(1 ; -5), C(6 ; 2) và BD có phương trình:

5x + 7y - 7 = 0.

Đặt \({x_B} = 7t\) ta có \({y_B} = 1 - 5t.\)

Vậy B(7t;1 - 5t).

Suy ra: \(\overrightarrow {BA}  = \left( {1 - 7t; - 6 + 5t} \right)\)

\(\overrightarrow {BC}  = (6 - 7t;1 + 5t).\)

Ta có:

\(\eqalign{
& \overrightarrow {BA} .\overrightarrow {BC} = 0 \cr
& \Leftrightarrow \left( {1 - 7t} \right)\left( {6 - 7t} \right) + \left( {1 + 5t} \right)\left( { - 6 + 5t} \right) = 0 \cr} \)

\(\Leftrightarrow 74{t^2} - 74t = 0 \Leftrightarrow \left[ \matrix{
t = 0 \hfill \cr
t = 1 \hfill \cr} \right.\)

Vậy B(0 ; 1); D(7 ; -4) hoặc B(7 ; -4); D(0 ; 1).

Sachbaitap.net


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.