Giải bài 23 trang 92 sách bài tập Toán 6 – Cánh Diều Tập 2


Đề bài

Cho 20 điểm phân biệt, trong đó có đúng 6 điểm thẳng hàng, ngoài ra không có 3 điềm nào thẳng hàng. Cứ qua 2 điểm ta vẽ được một đường thẳng. Hỏi từ 20 điểm đó vẽ được tất cả bao nhiêu đường thẳng?

Phương pháp giải - Xem chi tiết

Với m điểm phân biệt, trong đó không có 3 điểm nào thằng hàng thì số các đường thẳng kẻ được là \(\frac{{m.(m - 1)}}{2}\)

Qua n điểm thẳng hàng có duy nhất một đường thẳng

Lời giải chi tiết

Với 20 điểm phân biệt, nếu trong đó không có 3 điểm nào thằng hàng thì số các đường thẳng kẻ được là \(\frac{{20.(20 - 1)}}{2} = 190\)

Nếu trong 6 điểm không có điểm nào thẳng hàng thì số đường thẳng tạo thành là: \(\frac{{6.5}}{2} = 15\)

Nếu 6 điểm đó thẳng hàng thì số đường thẳng tạo thành là: 1

Vậy từ 20 điểm phân biệt, trong đó có đúng 6 điểm thẳng hàng thì số đường thẳng tạo thành là:

\(190 - 15 + 1 = 176\)(đường thẳng)


Bình chọn:
4.9 trên 7 phiếu