Bài 2.14 trang 68 SBT hình học 11


Giải bài 2.14 trang 68 sách bài tập hình học 11. Cho tứ diện ABCD có I và J lần lượt là trọng tâm các tam giác ABC và ABD. Chứng minh rằng IJ//CD.

Đề bài

Cho tứ diện \(ABCD\) có \(I\) và \(J\) lần lượt là trọng tâm các tam giác \(ABC\) và \(ABD\). Chứng minh rằng: \(IJ \parallel CD\).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của trong tâm.

Sử dụng định lý Talet.

Lời giải chi tiết

Gọi \(K\) là trung điểm của \(AB\).

Vì \(I\) là trọng tâm của tam giác \(ABC\) nên \(I \in KC\) và vì \(J\) là trọng tâm của tam giác \(ABD\) nên \(J \in KD\).

Từ đó suy ra trong tam giác \(CKD\) ta có

\(\dfrac{{KI}}{{KC}} = \dfrac{{KJ}}{{KD}} = \dfrac{1}{3} \Rightarrow {\rm{IJ}}\parallel CD\).

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài