Bài 2.13 trang 68 SBT hình học 11


Đề bài

Cho tứ diện \(ABCD\). Gọi \(M\), \(N\), \(P\), \(Q\), \(R\) và \(S\) lần lượt trung điểm của \(AB, CD, BC, AD, AC\) và \(BD\). Chứng minh rằng tứ giác \(MPNQ\) là hình bình hành. Từ đó suy ra ba đoạn thẳng \(MN, PQ\) và \(RS\) cắt nhau tại trung điểm mỗi đoạn.

Phương pháp giải - Xem chi tiết

Sử dụng định lý đường trung bình của tam giác.

Sử dụng tính chất hai đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường.

Lời giải chi tiết

Trong tam giác \(ABC\) ta có: \(MP\parallel AC\) và \(MP = \dfrac{AC}{2}\).

Trong tam giác \(ACD\) ta có: \(QN \parallel AC\) và \(QN = \dfrac{AC}{2}\).

Từ đó suy ra \(\left\{ \begin{array}{l}MP\parallel QN\\ MP = QN\end{array} \right.\)

⇒ Tứ giác \(MPNQ\) là hình bình hành.

Do vậy hai đường chéo \(MN\) và \(PQ\) cắt nhau tại trung điểm \(O \) của mỗi đường.

Tương tự: \(PR \parallel QS\) và \(PR = QS = \dfrac{AB}{2}\).

Do đó tứ giác \(PRQS\) là hình bình hành.

Suy ra hai đường chéo \(PQ\) và \(RS\) cắt nhau tại trung điểm \(O\) của \(PQ\) và \(OR = OS\)

Vậy ba đoạn thẳng \(MN, PQ\) và \(RS\) cắt nhau tại trung điểm mỗi đoạn.

Loigiaihay.com


Bình chọn:
3.7 trên 7 phiếu
  • Bài 2.14 trang 68 SBT hình học 11

    Giải bài 2.14 trang 68 sách bài tập hình học 11. Cho tứ diện ABCD có I và J lần lượt là trọng tâm các tam giác ABC và ABD. Chứng minh rằng IJ//CD.

  • Bài 2.15 trang 68 SBT hình học 11

    Giải bài 2.15 trang 68 sách bài tập hình học 11. Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy là AD và BC. Biết AD = a, BC = b...

  • Bài 2.12 trang 67 SBT hình học 11

    Giải bài 2.12 trang 67 sách bài tập hình học 11. Cho tứ diện ABCD. Cho I và J tương ứng là trung điểm của BC và AC, M là một điểm tùy ý trên cạnh AD...

  • Bài 2.11 trang 67 SBT hình học 11

    Giải bài 2.11 trang 67 sách bài tập hình học 11. Cho tứ diện ABCD. Trên các cạnh AB và AC lần lượt lấy các điểm M và N sao cho...

  • Bài 2.10 trang 67 SBT hình học 11

    Giải bài 2.10 trang 67 sách bài tập hình học 11. Cho hình chóp S.ABCD có đáy là hình hình hành ABCD. Tìm giao tuyến của các cặp mặt phẳng sau đây...

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.