Bài 1.8 trang 16 SBT hình học 11

Bình chọn:
4.9 trên 7 phiếu

Giải bài 1.8 trang 16 sách bài tập hình học 11. Tìm các trục đối xứng của hình vuông.

Đề bài

Tìm các trục đối xứng của hình vuông.

Phương pháp giải - Xem chi tiết

Sử dụng tính chất: Nếu một đa giác có trục đối xứng \(d\) thì qua phép đối xứng trục \(d\) mỗi đỉnh của nó phải biến thành một đỉnh của đa giác, mỗi cạnh của nó phải biến thành một cạnh của đa giác bằng cạnh ấy.

Lời giải chi tiết

Cho hình vuông \(ABCD\).  Gọi \(F\) là phép đối xứng trục \(d\) biến hình vuông đó thành chính nó. Lí luận tương tự, ta thấy \(A\) chỉ có thể biến thành các điểm \(A\), \(B\), \(C\) hoặc \(D\).

- Nếu \(A\) biến thành chính nó thì \(C\) chỉ có thể biến thành chính nó và \(B\) biến thành \(D\). Từ đó suy ra \(F\) là phép đối xứng qua trục \(AC\).

- Nếu \(B\) biến thành chính nó thì \( D\) chỉ có thể biến thành chính nó và \(A\) biến thành \(C\). Từ đó suy ra \(F\) là phép đối xứng qua trục \(BD\).

-  Nếu \(A\) biến thành \(B\) thì \(d\) là đường trung trực của \(AB\). Khi đó \(C\) biến thành \(D\).

- Nếu \( B\) biến thành \(C\) thì \(d\) là đường trung trực của \(BC\). Khi đó \(A\) biến thành \(D\).

Do đó hình vuông \(ABCD\) có bốn trục đối xứng là các đường thẳng \(AC\), \(BD\) và các đường trung trực của \(AB\) và \(BC\).

 Loigiaihay.com

Các bài liên quan: - Bài 3: Phép đối xứng trục

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Góp ý Loigiaihay.com, nhận quà liền tay