Bài 1.7 trang 16 SBT hình học 11


Đề bài

Trong mặt phẳng \(Oxy\), cho đường thẳng \(d\) có phương trình \(x-5y+7=0\) và đường thẳng \(d’\) có phương trình \(5x-y-13=0\). Tìm phép đối xứng trục biến \(d\) thành \(d’\).

Phương pháp giải - Xem chi tiết

Khoảng cách từ một điểm thuộc trục đối xứng đến hai đường thẳng \(d\) và \(d’\) là bằng nhau.

Lời giải chi tiết

Ta thấy \(\frac{1}{5} \ne \frac{{ - 5}}{{ - 1}}\) nên \(d\) và \(d’\)  không song song với nhau.

Do đó trục đối xứng \(\Delta\) của phép đối xứng biến \(d\) thành \(d’\) chính là đường phân giác của góc tạo bởi \(d\) và \(d’\).

Gọi M(x;y) bất kì thuộc đường phân giác \(\Delta\) của d và d'. Khi đó,

Khoảng cách từ M\((x;y)\) thuộc \(\Delta\) đến \(d\) và \(d’\) là bằng nhau

Nên ta có: \(\dfrac{{\left| {x - 5y + 7} \right|}}{{\sqrt {1 + 25} }} = \dfrac{{\left| {5x - y - 13} \right|}}{{\sqrt {25 + 1} }} \)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
x - 5y + 7 = 5x - y - 13\\
x - 5y + 7 = - \left( {5x - y - 13} \right)
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
- 4x - 4y + 20 = 0\\
6x - 6y - 6 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x + y - 5 = 0\\
x - y - 1 = 0
\end{array} \right.
\end{array}\)

Từ đó tìm được hai phép đối xứng qua các trục:

\(\Delta_1\) có phương trình \(x+y-5=0\)

\(\Delta_2\) có phương trình \(x-y-1=0\).

 Loigiaihay.com


Bình chọn:
4 trên 7 phiếu

Các bài liên quan: - Bài 3: Phép đối xứng trục

  • Bài 1.8 trang 16 SBT hình học 11

    Giải bài 1.8 trang 16 sách bài tập hình học 11. Tìm các trục đối xứng của hình vuông.

  • Bài 1.9 trang 16 SBT hình học 11

    Giải bài 1.9 trang 16 sách bài tập hình học 11. Cho đường thẳng c, d cắt nhau và hai điểm A, B không thuộc hai đường thẳng đó. Hãy dựng điểm C trên c, điểm D trên d sao cho tứ giác ABCD là hình thang cân nhận AB là một cạnh đáy (không cần biện luận).

  • Bài 1.10 trang 16 SBT hình học 11

    Giải bài 1.10 trang 16 sách bài tập hình học 11. Cho đường thẳng d và hai điểm A, B không thuộc d nhưng nằm cùng phía đối với d. Tìm trên d điểm M sao cho tổng các khoảng cách từ đó đến A và B là bé nhất.

  • Bài 1.6 trang 16 SBT hình học 11

    Giải bài 1.6 trang 16 sách bài tập hình học 11. Trong mặt phẳng tọa độ Oxy, cho điểm M(3; -5), đường thẳng d có phương trình 3x+2y-6=0 và đường tròn (C) có phương trình...

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.