Bài 1.7 trang 8 SBT giải tích 12


Giải bài 1.7 trang 8 sách bài tập giải tích 12. Chứng minh các bất đẳng thức sau...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh các bất đẳng thức sau:

LG câu a

a) \(\tan x > \sin x\), \(0 < x < \dfrac{\pi }{2}\)

Phương pháp giải:

Xét hàm \(f\left( x \right) = \tan x - \sin x\) và chứng minh nó đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\).

Từ đó suy ra điều phải chứng minh.

Giải chi tiết:

Xét hàm \(f\left( x \right) = \tan x - \sin x\) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\) ta có:

\(f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} - \cos x\) \( = \dfrac{{1 - {{\cos }^3}x}}{{{{\cos }^2}x}} > 0\) với \(\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\) vì \(\cos x < 1\) với mọi \(x \in \left( {0;\dfrac{\pi }{2}} \right)\) nên \({\cos ^3}x < 1,\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\)

Do đó hàm số \(f\left( x \right) = \tan x - \sin x\) đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\)

\( \Rightarrow f\left( x \right) > f\left( 0 \right) = 0\) \( \Rightarrow \tan x - \sin x > 0 \Leftrightarrow \tan x > \sin x\)  với mọi \(x \in \left( {0;\dfrac{\pi }{2}} \right)\).

LG câu b

b) \(1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x}  < 1 + \dfrac{1}{2}x\) với \(x > 0\)

Phương pháp giải:

Xét các hàm số \(f\left( x \right) = 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} \) và \(g\left( x \right) = \sqrt {1 + x}  - 1 - \dfrac{1}{2}x\) trên \(\left( {0; + \infty } \right)\) và chứng minh chúng nghịch biến trên \(\left( {0; + \infty } \right)\).

Từ đó suy ra điều phải chứng minh.

Giải chi tiết:

Xét \(f\left( x \right) = 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} \) trên \(\left( {0; + \infty } \right)\) ta có: \(f'\left( x \right) = \dfrac{1}{2} - \dfrac{1}{4}x - \dfrac{1}{{2\sqrt {x + 1} }}\).

Vì \(x > 0\) nên \(f'\left( x \right) < \dfrac{1}{2} - \dfrac{1}{4}.0 - \dfrac{1}{{2\sqrt {0 + 1} }} = 0\) nên hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\)

Do đó \(f\left( x \right) < f\left( 0 \right) = 0\) \( \Rightarrow 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x}  < 0\) \( \Leftrightarrow 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x} \,\,\left( 1 \right)\)

Xét \(g\left( x \right) = \sqrt {1 + x}  - 1 - \dfrac{1}{2}x\) trên \(\left( {0; + \infty } \right)\) ta có: \(g'\left( x \right) = \dfrac{1}{{2\sqrt {x + 1} }} - \dfrac{1}{2}\)

Vì \(x > 0\) nên \(g'\left( x \right) < \dfrac{1}{{2\sqrt {0 + 1} }} - \dfrac{1}{2} = 0\) hay \(y = g\left( x \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\)

Do đó \(g\left( x \right) < g\left( 0 \right) = 0\) hay \(\sqrt {1 + x}  - 1 - \dfrac{1}{2}x < 0\) \( \Leftrightarrow \sqrt {1 + x}  < 1 + \dfrac{1}{2}x\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta được \(1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x}  < 1 + \dfrac{1}{2}x\) với \(x > 0\). (đpcm)

Loigiaihay.com


Bình chọn:
3.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí