Bài 1.2 trang 7 SBT giải tích 12


Giải bài 1.2 trang 7 sách bài tập giải tích 12. Tìm các khoảng đồng biến, nghịch biến của các hàm số...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các khoảng đồng biến, nghịch biến của các hàm số:

LG câu a

a) \(y = {{3 - 2x} \over {x + 7}}\)

Phương pháp giải:

- Tìm TXĐ.

- Tính \(y'\) theo công thức \(\left( {\dfrac{{ax + b}}{{cx + d}}} \right)' = \dfrac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\)

- Xét dấu \(y'\) và kết luận khoảng đồng biến, nghịch biến.

Giải chi tiết:

TXĐ: \(\mathbb{R}\backslash \left\{ { - 7} \right\}\)

\(y' = \dfrac{{ - 2.7 - 3.1}}{{{{\left( {x + 7} \right)}^2}}} = \dfrac{{ - 17}}{{{{\left( {x + 7} \right)}^2}}} < 0,\) \(\forall x \ne  - 7\)

Vậy hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 7} \right)\) và \(\left( {  - 7};+ \infty  \right)\).

LG câu b

b) \(y = {1 \over {{{(x - 5)}^2}}}\)

Phương pháp giải:

- Tìm TXĐ.

- Tính \(y'\) theo công thức \(\left( {\dfrac{1}{u}} \right)' = \dfrac{{ - u'}}{{{u^2}}}\)

- Xét dấu \(y'\) và kết luận khoảng đồng biến, nghịch biến.

Giải chi tiết:

TXĐ: \(D = \mathbb{R}\backslash \left\{ 5 \right\}\)

Ta có: \(y' = \dfrac{{ - \left[ {{{\left( {x - 5} \right)}^2}} \right]'}}{{{{\left( {x - 5} \right)}^4}}}\) \( = \dfrac{{ - 2\left( {x - 5} \right)}}{{{{\left( {x - 5} \right)}^4}}}\) \( = \dfrac{{ - 2}}{{{{\left( {x - 5} \right)}^3}}}\)

\(y' > 0 \Leftrightarrow \dfrac{{ - 2}}{{{{\left( {x - 5} \right)}^3}}} > 0\) \( \Leftrightarrow {\left( {x - 5} \right)^3} < 0 \Leftrightarrow x < 5\) nên hàm số đồng biến trên khoảng \(\left( { - \infty ;5} \right)\).

\(y' < 0 \Leftrightarrow \dfrac{{ - 2}}{{{{\left( {x - 5} \right)}^3}}} < 0\) \( \Leftrightarrow {\left( {x - 5} \right)^3} > 0 \Leftrightarrow x > 5\) nên hàm số nghịch biến trên khoảng \(\left( {5; + \infty } \right)\).

LG câu c

c) \(y = {{2x} \over {{x^2} - 9}}\) 

Phương pháp giải:

- Tìm TXĐ.

- Tính \(y'\) theo công thức \(\left( {\dfrac{u}{v}} \right)' = \dfrac{{u'v - uv'}}{{{v^2}}}\)

- Xét dấu \(y'\) và kết luận khoảng đồng biến, nghịch biến.

Giải chi tiết:

TXĐ: \(D = \mathbb{R}\backslash \left\{ { \pm 3} \right\}\)

\(y' = \dfrac{{\left( {2x} \right)'.\left( {{x^2} - 9} \right) - 2x.\left( {{x^2} - 9} \right)'}}{{{{\left( {{x^2} - 9} \right)}^2}}}\) \( = \dfrac{{2\left( {{x^2} - 9} \right) - 2x.2x}}{{{{\left( {{x^2} - 9} \right)}^2}}} = \dfrac{{ - 2{x^2} - 18}}{{{{\left( {{x^2} - 9} \right)}^2}}}\) \( = \dfrac{{ - 2\left( {{x^2} + 9} \right)}}{{{{\left( {{x^2} - 9} \right)}^2}}} < 0,\forall x \in D\)

Vậy hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 3} \right),\left( { - 3;3} \right),\left( {3; + \infty } \right)\).

LG câu d

d) \(y = {{{x^4} + 48} \over x}\)

Phương pháp giải:

- Tìm TXĐ.

- Tính \(y'\) theo công thức \(\left( {\dfrac{u}{v}} \right)' = \dfrac{{u'v - uv'}}{{{v^2}}}\).

- Xét dấu \(y'\) và kết luận khoảng đồng biến, nghịch biến.

Giải chi tiết:

TXĐ: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

Ta có: \(y' = \dfrac{{\left( {{x^4} + 48} \right)'.x - \left( x \right)'.\left( {{x^4} + 48} \right)}}{{{x^2}}}\) \( = \dfrac{{4{x^3}.x - {x^4} - 48}}{{{x^2}}} = \dfrac{{3{x^4} - 48}}{{{x^2}}}\) \( = \dfrac{{3\left( {{x^4} - 16} \right)}}{{{x^2}}} = \dfrac{{3\left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right)}}{{{x^2}}}\)

\(y' = 0 \Leftrightarrow {x^2} - 4 = 0 \Leftrightarrow x =  \pm 2\).

Bảng biến thiên:

Vậy hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {2; + \infty } \right)\).

Hàm số nghịch biến trên các khoảng \(\left( { - 2;0} \right)\) và \(\left( {0;2} \right)\).

LG câu e

e) \(y = {{{x^2} - 2x + 3} \over {x + 1}}\) 

Phương pháp giải:

- Tìm TXĐ.

- Tính \(y'\) theo công thức \(\left( {\dfrac{u}{v}} \right)' = \dfrac{{u'v - uv'}}{{{v^2}}}\).

- Xét dấu \(y'\) và kết luận khoảng đồng biến, nghịch biến.

Giải chi tiết:

TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

Ta có: \(y' = \dfrac{{\left( {{x^2} - 2x + 3} \right)'\left( {x + 1} \right) - \left( {x + 1} \right)'\left( {{x^2} - 2x + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\) \( = \dfrac{{\left( {2x - 2} \right)\left( {x + 1} \right) - \left( {{x^2} - 2x + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\) \( = \dfrac{{{x^2} + 2x - 5}}{{{{\left( {x + 1} \right)}^2}}}\)

Khi đó \(y' = 0 \Leftrightarrow {x^2} + 2x - 5 = 0\) \( \Leftrightarrow x =  - 1 \pm \sqrt 6 \)

Bảng biến thiên:

Vậy hàm số đã cho đồng biến trên các khoảng \(( - \infty ; - 1 - \sqrt 6 ),( - 1 + \sqrt 6 ; + \infty )\)

và nghịch biến trên các khoảng \(( - 1 - \sqrt 6 ; - 1), ( - 1; - 1 + \sqrt 6 )\)

LG câu g

g) \(y = {{{x^2} - 5x + 3} \over {x - 2}}\)

Phương pháp giải:

- Tìm TXĐ.

- Tính \(y'\) theo công thức \(\left( {\dfrac{u}{v}} \right)' = \dfrac{{u'v - uv'}}{{{v^2}}}\).

- Xét dấu \(y'\) và kết luận khoảng đồng biến, nghịch biến.

Giải chi tiết:

TXĐ: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\)

Ta có: \(y' = \dfrac{{\left( {{x^2} - 5x + 3} \right)'\left( {x - 2} \right) - \left( {x - 2} \right)'\left( {{x^2} - 5x + 3} \right)}}{{{{\left( {x - 2} \right)}^2}}}\) \( = \dfrac{{\left( {2x - 5} \right)\left( {x - 2} \right) - \left( {{x^2} - 5x + 3} \right)}}{{{{\left( {x - 2} \right)}^2}}}\) \( = \dfrac{{{x^2} - 4x + 7}}{{{{\left( {x - 2} \right)}^2}}}\) \( = \dfrac{{{{\left( {x - 2} \right)}^2} + 3}}{{{{\left( {x - 2} \right)}^2}}} > 0,\forall x \in D\).

Vậy hàm số đồng biến trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.