Bài 1.12 trang 9 SBT giải tích 12


Giải bài 1.12 trang 9 sách bài tập giải tích 12. Phương trình nào sau đây có nghiệm duy nhất trên R...

Đề bài

Phương trình nào sau đây có nghiệm duy nhất trên \(\mathbb{R}\)?

A. \(3{\sin ^2}x - {\cos ^2}x + 5 = 0\)

B. \({x^2} - 5x + 6 = 0\)

C. \({x^5} + {x^3} - 7 = 0\)

D. \(3\tan x - 4 = 0\)

Phương pháp giải - Xem chi tiết

Xét tính đơn điệu của mỗi hàm số vế trái, hàm số nào đơn điệu trên \(\mathbb{R}\) thì phương trình có nghiệm duy nhất.

Lời giải chi tiết

Đáp án C vì: Xét hàm \(f\left( x \right) = {x^5} + {x^3} - 7\) có \(f'\left( x \right) = 5{x^4} + 3{x^2} = {x^2}\left( {5{x^2} + 3} \right)\).

\(f'\left( x \right) = 0 \Leftrightarrow x = 0\) và \(f'\left( x \right) \ge 0,\forall x \in \mathbb{R}\) nên hàm số đồng biến trên \(\mathbb{R}\).

Mặt khác \(f\left( 0 \right) =  - 7 < 0,f\left( 2 \right) = 33 > 0\) nên \(f\left( 0 \right).f\left( 2 \right) < 0\).

Hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {0;2} \right]\) nên tồn tại \({x_0} \in \left( {0;2} \right)\) để \(f\left( {{x_0}} \right) = 0\) hay phương trình \(f\left( x \right) = 0\) có nghiệm duy nhất trên \(\mathbb{R}\).

Chọn C.

Chú ý:

Cách khác:

+) Phương trình \(3{\sin ^2}x - {\cos ^2}x + 5 = 0\) \( \Leftrightarrow 3{\sin ^2}x - \left( {1 - {{\sin }^2}x} \right) + 5 = 0\) \( \Leftrightarrow 4{\sin ^2}x + 4 = 0\) \( \Leftrightarrow 4\left( {{{\sin }^2}x + 1} \right) = 0\) (vô nghiệm vì \(0 \le {\sin ^2}x \le 1\)) nên loại A.

+) Các phương trình \({x^2} - 5x + 6 = 0\) và \(3\tan x - 4 = 0\) có nhiều hơn một nghiệm nên loại B, D.

Chọn C.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài