Bài 1.3 trang 8 SBT giải tích 12


Giải bài 1.3 trang 8 sách bài tập giải tích 12. Xét tính đơn điệu của các hàm số...

Lựa chọn câu để xem lời giải nhanh hơn

Xét tính đơn điệu của các hàm số:

LG câu a

a) \(y = {{\sqrt x } \over {x + 100}}\)

Phương pháp giải:

- Tìm tập xác định.

- Tính \(y'\) và tìm nghiệm của \(y'=0\).

- Xét dấu của \(y'\) và kết luận khoảng đồng biến, nghịch biến của hàm số.

Giải chi tiết:

Ta có: \(y' = \dfrac{{\left( {\sqrt x } \right)'\left( {x + 100} \right) - \sqrt x .\left( {x + 100} \right)'}}{{{{\left( {x + 100} \right)}^2}}}\) \( = \dfrac{{\dfrac{{x + 100}}{{2\sqrt x }} - \sqrt x }}{{{{\left( {x + 100} \right)}^2}}} = \dfrac{{100 - x}}{{2\sqrt x {{\left( {x + 100} \right)}^2}}}\)

\(y' = 0 \Leftrightarrow x = 100\).

Bảng biến thiên:

Vậy hàm số đồng biến trên khoảng \((0; 100)\) và nghịch biến trên khoảng \((100; +∞)\)

LG câu b

b) \(y = {{{x^3}} \over {\sqrt {{x^2} - 6} }}\)

Phương pháp giải:

- Tìm tập xác định.

- Tính \(y'\) và tìm nghiệm của \(y'=0\).

- Xét dấu của \(y'\) và kết luận khoảng đồng biến, nghịch biến của hàm số.

Giải chi tiết:

TXĐ: \((-∞; \sqrt 6 ) ∪ (\sqrt 6; +∞)\)

\(y' = {{2{x^2}({x^2} - 9)} \over {({x^2} - 6)\sqrt {{x^2} - 6} }}\) ;\(y' = 0 \Leftrightarrow x =  \pm 3\)

Bảng biến thiên:

Vậy hàm số đồng biến trên các khoảng \((-∞; -3), (3; +∞)\), nghịch biến trên các khoảng \((-3;-\sqrt 6 ), (\sqrt 6 ; 3)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài