Bài 1.4 trang 8 SBT Giải tích 12


Giải bài 1.4 trang 8 sách bài tập giải tích 12. Xét sự đồng biến, nghịch biến của các hàm số

Lựa chọn câu để xem lời giải nhanh hơn

Xét sự đồng biến, nghịch biến của các hàm số:

LG câu a

a) \(y = x - \sin x,   x ∈ [0; 2π]\)

Phương pháp giải:

- Tìm TXĐ.

- Tính \(y'\) và xét dấu \(y'\).

- Kết luận.

Giải chi tiết:

\(y = x - \sin x, x ∈ [0; 2π]\).

\(y' = 1 - \cos x≥ 0 \) với mọi \(x ∈ [0; 2π]\)

Dấu “=” xảy ra chỉ tại \(x = 0 \) và \(x = 2π\).

Vậy hàm số đồng biến trên đoạn \([0; 2π]\).

LG câu b

b) \(y = \sin {1 \over x}\) , \((x > 0)\)

Phương pháp giải:

- Tìm TXĐ.

- Tính \(y'\) và xét dấu \(y'\).

- Kết luận.

Giải chi tiết:

Xét hàm số \(y = \sin {1 \over x}\)  với \(x > 0\).

\(y' =  - {1 \over {{x^2}}}\cos {1 \over x}\)

Với \(x>0\) ta có:

\({1 \over {{x^2}}}( - \cos {1 \over x}) > 0\)  ⟺ \(\cos {1 \over x}\) < 0

⟺ \({\pi  \over 2}(1 + 4k) < {1 \over x} < {\pi  \over 2}(3 + 4k)\) ,k = 0, 1, 2 ….

⟺ \({2 \over {\pi (1 + 4k)}} > x > {2 \over {\pi (3 + 4k)}}\)  , k = 0, 1, 2 ……..

Do đó, hàm số đồng biến trên các khoảng

\(....,({2 \over {(4k + 3)\pi }};{2 \over {(4k + 1)\pi }}),({2 \over {(4k - 1)\pi }};{2 \over {(4k - 3)\pi }}),.....,\) \(({2 \over {7\pi }};{2 \over {5\pi }}),({2 \over {3\pi }};{2 \over \pi })\)

và nghịch biến trên các khoảng

……, \(({2 \over {(4k + 1)\pi }};{2 \over {(4k - 1)\pi }}),({2 \over {5\pi }};{2 \over {3\pi }}),.....,({2 \over \pi }; + \infty )\)

với k = 0, 1, 2 …

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài