Bài 1.1 trang 7 SBT giải tích 12


Giải bài 1.1 trang 7 sách bài tập giải tích 12. Xét sự đồng biến, nghịch biến của các hàm số...

Lựa chọn câu để xem lời giải nhanh hơn

Xét sự đồng biến, nghịch biến của các hàm số:

LG câu a

a) \(y = 3{x^2} - 8{x^3}\)

Phương pháp giải:

- Tính \(y'\).

- Tìm nghiệm của phương trình \(y'=0\).

- Xét dấu \(y'\) và kết luận.

Lời giải chi tiết:

TXĐ: R

\(y' = 6x - 24{x^2} = 6x(1 - 4x)\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \dfrac{1}{4}\end{array} \right.\)

Xét dấu \(y'\):

Ta thấy, \(y' > 0 \Leftrightarrow 0 < x < \dfrac{1}{4}\) nên hàm số đồng biến trên khoảng \(\left( {0;\dfrac{1}{4}} \right)\).

\(y' < 0 \Leftrightarrow \left[ \begin{array}{l}x > \dfrac{1}{4}\\x < 0\end{array} \right.\) nên hàm số nghịch biến trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {\dfrac{1}{4}; + \infty } \right)\).

LG câu b

b) \(y = 16x + 2{x^2} - {{16} \over 3}{x^3} - {x^4}\)

Phương pháp giải:

- Tính \(y'\).

- Tìm nghiệm của phương trình \(y'=0\).

- Xét dấu \(y'\) và kết luận.

Lời giải chi tiết:

TXĐ: R

\(y' = 16 + 4x - 16{x^2} - 4{x^3}\) \( =  - 4(x + 4)({x^2} - 1)\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 4\\x =  \pm 1\end{array} \right.\)

Bảng biến thiên:

Vậy hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 4} \right)\) và \(\left( { - 1;1} \right)\), nghịch biến trên các khoảng \(\left( { - 4; - 1} \right)\) và \(\left( {1; + \infty } \right)\).

LG câu c

c) \(y = {x^3} - 6{x^2} + 9x\)

Phương pháp giải:

- Tính \(y'\).

- Tìm nghiệm của phương trình \(y'=0\).

- Xét dấu \(y'\) và kết luận.

Lời giải chi tiết:

TXĐ: R

\(y' = 3{x^2} - 12x + 9\)

y'=0   <=>  \(\left[ {\matrix{{x = 1} \cr {x = 3} \cr} } \right.\)

\(y' > 0 \Leftrightarrow \left[ \begin{array}{l}x > 3\\x < 1\end{array} \right.\) nên hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\).

\(y' < 0 \Leftrightarrow 1 < x < 3\) nên hàm số nghịch biến trên khoảng \(\left( {1;3} \right)\).

LG câu d

d) \(y = {x^4} + 8{x^2} + 5\)

Phương pháp giải:


- Tính \(y'\).

- Tìm nghiệm của phương trình \(y'=0\).

- Xét dấu \(y'\) và kết luận.

Lời giải chi tiết:

TXĐ: R

\(y' = 4{x^3} + 16x = 4x({x^2} + 4)\)

\(y' = 0 \Leftrightarrow x = 0\)

\(y' > 0 \Leftrightarrow x > 0\) nên hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

\(y' < 0 \Leftrightarrow x < 0\) nên hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.7 trên 6 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài