Câu hỏi 7 trang 99 SGK Giải tích 12


Giải câu hỏi 7 trang 99 SGK Giải tích 12. Hãy tính...

Đề bài

Ta có: \(\left( {x\cos x} \right)' = \cos x-x\sin x \) hay \( - x\sin x{\rm{ }} = \left( {x\cos x} \right)'-\cos x.\)

Hãy tính: \(\smallint \left( {x\cos x} \right)'dx\) và \(\smallint \cos xdx\)

Từ đó tính \(\smallint x\sin xdx.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Tính các nguyên hàm, sử dụng công thức: \(\int {f'\left( x \right)dx}  = f\left( x \right) + C\) và các tính chất của nguyên hàm.

Lời giải chi tiết

Ta có: \(\int {\left( {x\cos x} \right)'dx}  = x\cos x + {C_1}\) và \(\int {\cos xdx}  = \sin x + {C_2}\)

Do đó \(\int {x\sin xdx}  =  - \int { (- x\sin x)dx} \) \( =  - \int {\left[ {\left( {x\cos x} \right)' - \cos x} \right]dx} \) \( =  - \int {\left( {x\cos x} \right)'dx}  + \int {\cos xdx} \) \( =  - x\cos x - {C_1} + \sin x + {C_2}\) \( =  - x\cos x + \sin x + C\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1. Nguyên hàm

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài