Trả lời câu hỏi 5 trang 96 SGK Giải tích 12


Đề bài

Lập bảng theo mẫu dưới đây rồi dùng bảng đạo hàm trang 77 và trong SGK Đại số và Giải tích 11 để điền vào các hàm số thích hợp vào cột bên phải.

\(f'\left( x \right)\)

\(f\left( x \right) + C\)

\(0\)

 

\(\alpha {x^{\alpha  - 1}}\)

 

\(\dfrac{1}{x}\)

 

\({e^x}\)

 

\({a^x}\ln a\left( {a > 0,a \ne 1} \right)\)

 

\(\cos x\)

 

\( - \sin x\)

 

\(\dfrac{1}{{{{\cos }^2}x}}\)

 

\( - \dfrac{1}{{{{\sin }^2}x}}\)

 

 


Video hướng dẫn giải

Lời giải chi tiết

\(f'\left( x \right)\)

\(f\left( x \right) + C\)

\(0\)

\(C\)

\(\alpha {x^{\alpha  - 1}}\)

\({x^\alpha } + C\)

\(\dfrac{1}{x}\)

\(\ln \left| x \right| + C\)

\({e^x}\)

\({e^x} + C\)

\({a^x}\ln a\left( {a > 0,a \ne 1} \right)\)

\({a^x} + C\)

\(\cos x\)

\(\sin x + C\)

\( - \sin x\)

\(\cos x + C\)

\(\dfrac{1}{{{{\cos }^2}x}}\)

\(\tan x + C\)

\( - \dfrac{1}{{{{\sin }^2}x}}\)

\(\cot x + C\)

Loigiaihay.com


Bình chọn:
4 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.