Bài 1 trang 100 SGK Giải tích 12

Bình chọn:
2.8 trên 16 phiếu

Giải bài 1 trang 100 SGK Giải tích 12.Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại?

Đề bài

Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số còn lại?

a)  \(e^{-x}\) và \(-  e^{-x}\);        b) \(\sin 2x\) và \(\sin^2x\) 

c) \((1-\dfrac{2}{x})^{2}e^{x}\) và \((1-\dfrac{4}{x})e^{x}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Sử dụng định nghĩa: Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) nếu \(F'(x)=f(x)\) với mọi \(x\) thuộc tập xác định.

+) Sử dụng các công thức tính đạo hàm của các hàm cơ bản: \( \left( {{e^u}} \right)' = u'{e^u};\;\;\left( {\sin u} \right)' = u'\cos u....\)

Lời giải chi tiết

a) \(e^{-x}\) và \(-  e^{-x}\) là nguyên hàm của nhau, vì:

\(({e^{ - x}})'= {e^{ - x}}\left( { - 1} \right)=  - {e^{ - x}}\)  và \(( - {e^{ - x}})' = \left( { - 1} \right)( - {e^{ - x}}) = {e^{ - x}}\)

b)  \(sin^2x\)   là nguyên hàm của \(sin2x\), vì:

\(\left( {si{n^2}x} \right)'{\rm{ }} = {\rm{ }}2sinx.\left( {sinx} \right)' = 2sinxcosx = sin2x\)

c) \((1-\dfrac{4}{x})e^{x}\) là một nguyên hàm của \((1-\dfrac{2}{x})^{2}e^{x}\)  vì:

\(({(1-\dfrac{4}{x})e^{x})}'\) \(= \dfrac{4}{x^{2}}e^{x}+(1-\dfrac{4}{x})e^{x}\)\(= \left (1-\dfrac{4}{x}+\dfrac{4}{x^{2}} \right )e^{x}\) \(= (1-\dfrac{2}{x})^{2}e^{x}.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Bài 1. Nguyên hàm

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.

Góp ý Loigiaihay.com, nhận quà liền tay