Bài 3 trang 101 SGK Giải tích 12


Giải bài 3 trang 101 SGK Giải tích 12. Sử dụng phương pháp biến số, hãy tính:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Sử dụng phương pháp biến số, hãy tính:

LG a

a)  \(∫{(1-x)}^9dx\)   (đặt \(u =1-x\) ) ;

Phương pháp giải:

+) Đặt  \(u = u\left( x \right) \Rightarrow du = u'\left( x \right)dx.\)

+) Khi đó:  \( \Rightarrow I = \int {f\left( x \right)dx}  = \int {g\left( u \right)du.} \)

+) Sau đó sử dụng các công thức nguyên hàm cơ bản để tìm nguyên hàm của hàm ẩn \(u\).

+) Suy ra nguyên hàm của hàm số ẩn \(x\).

Lời giải chi tiết:

Cách 1: Đặt \(u = 1 - x \Rightarrow du= -dx\). Khi đó ta được  \(-\int u^{9}du = -\dfrac{1}{10}u^{10}+C\)

Suy ra \(\int(1-x)^{9}dx=-\dfrac{(1-x)^{10}}{10}+C\)

Cách 2: \(\smallint {\left( {1 - x} \right)^9}dx =  - \smallint {\left( {1 - x} \right)^{9}}d\left( {1 - x} \right)=\)  \(-\dfrac{(1-x)^{10}}{10} +C\)

LG b

b)  \(∫x{(1 + {x^2})^{{3 \over 2}}}dx\) (đặt \(u = 1 + x^2\) )

Lời giải chi tiết:

Cách 1: Đặt \(u = 1 + {x^2} \Rightarrow du = 2xdx \Rightarrow xdx = \dfrac{1}{2}du.\)

\( \Rightarrow \int {\dfrac{1}{2}{u^{\dfrac{3}{2}}}du =\dfrac{1}{2}.\dfrac{{{u^{\dfrac{3}{2} + 1}}}}{{\dfrac{3}{2} + 1}} + C = \dfrac{{{u^{\dfrac{5}{2}}}}}{5} + C =\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{5}{2}}}}}{5}} +C.\)

Cách 2:  \(\int x(1+x^{2})^{\dfrac{3}{2}}dx= \dfrac{1}{2}\int (1+x^{2})^{\dfrac{3}{2}}d(1+x^2{}) \\= \dfrac{1}{2}.\dfrac{2}{5}(1+x^{2})^{\dfrac{5}{2}}+C = \dfrac{1}{5}.(1+x^{2})^{\dfrac{5}{2}}+C\)

LG c

c)  \(∫cos^3xsinxdx\)   (đặt \(t = cosx\))

Lời giải chi tiết:

Cách 1: Đặt:  \(t = {\mathop{\rm cosx}\nolimits}  \Rightarrow dt =  - sinxdx.\)

 \(\begin{array}{l} \Rightarrow \int {{{\cos }^3}x.{\mathop{\rm sinxdx}\nolimits} }  = \int { - {t^3}du} \\ =  - \dfrac{1}{4}{t^4} + C =  - \dfrac{1}{4}{\cos ^4}x + C.\end{array}\)

Cách 2: \(∫cos^3xsinxdx = -∫cos^3xd(cosx)\\= -\dfrac{1}{4}.cos^{4}x + C.\)

LG d

d)  \(\int \dfrac{dx}{e^{x}+e^{-x}+2}\)    (đặt \(u= e^x+1\))

Lời giải chi tiết:

Cách 1:

Ta có:  \({e^x} + {e^{ - x}} + 2 = {e^x} + \dfrac{1}{{{e^x}}} + 2 = \dfrac{{{e^{2x}} + 2{e^x} + 1}}{{{e^x}}} = \dfrac{{{{\left( {{e^x} + 1} \right)}^2}}}{{{e^x}}}.\)

 \( \Rightarrow \dfrac{1}{{{e^x} + {e^{ - x}} + 2}} = \dfrac{{{e^x}}}{{{{\left( {{e^x} + 1} \right)}^2}}}.\)

Đặt  \(u = {e^x} + 1 \Rightarrow du = {e^x}dx.\)

\(\int {\dfrac{{dx}}{{{e^x} + {e^{ - x}} + 2}}}  = \int {\dfrac{{{e^x}}}{{{{\left( {{e^x} + 1} \right)}^2}}}dx} \) \( = \int {\dfrac{{du}}{{{u^2}}}}  =  - \dfrac{1}{u} + C =  - \dfrac{1}{{{e^x} + 1}} + C\)

Cách 2: \(\int \dfrac{dx}{e^{x}+e^{-x}+2} =  \int \dfrac{e^{x}}{e^{2x}+2e^{x}+1}dx\\ =  \int \dfrac{d(e^{x}+1)}{(e^{x}+1)^{2}}dx=\dfrac{-1}{e^{x}+1} + C.\)

Loigiaihay.com


Bình chọn:
3.9 trên 18 phiếu

Các bài liên quan: - Bài 1. Nguyên hàm

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài