Bài 6 trang 128 SGK Giải tích 12

Bình chọn:
3.8 trên 4 phiếu

Giải bài 6 trang 128 SGK Giải tích 12. Thể tích của khối tròn xoay tại thành bằng:

Đề bài

Cho hình phẳng giới hạn bởi các đường thẳng \( y = \sqrt x\) và \(y = x\) quay xung quanh trục \(Ox\). Thể tích của khối tròn xoay tại thành bằng:

A. \(0\)                          B. \(– π\)                          

 C. \(π\)                         D. \({\pi  \over 6}\)


Phương pháp giải - Xem chi tiết

Quya hình phẳng được giới hạn bởi các đồ thị hàm số \(y=f(x); \, \, y=g(x)\) và các đường thẳng \(x=a;\, \, y=b \, (a<b)\) quanh trục \(Ox\) thì thể tích của hình phẳng đó được tính bởi công thức: \(V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx.} \)

Lời giải chi tiết

Phương trình hoành độ giao điểm của hai đường thẳng \(y = \sqrt x\)  và \(y = x\) là:

\(x = \sqrt x ⇔ x = 0\) hoặc \(x = 1\)

Thể tích của khối tròn xoay tạo thành bằng:

\(V = \pi \int_0^1 {(x - {x^2}} )dx = \pi \left[ {{{{x^2}} \over 2} - {{{x^3}} \over 3}} \right]\left| {_0^1} \right. = {\pi  \over 6}\)

Chọn đáp án D.

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Ôn tập Chương III - Nguyên hàm - Tích phân và ứng dụng

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu