Bài 5 trang 127 SGK Giải tích 12

Bình chọn:
3.8 trên 13 phiếu

Giải bài 5 trang 127 SGK Giải tích 12. Tính:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính:

LG a

a) \(\displaystyle\int_0^3 {{x \over {\sqrt {1 + x} }}} dx\)

Phương pháp giải:

+) Sử dụng phương pháp đổi biến và các công thức tính tích phân cơ bản để tính tích phân.

+) Chú ý: Khi đổi biến cần đổi cận.

Lời giải chi tiết:

Đặt \(t = \sqrt {1 + x} \) , ta được: \(x = t^2- 1, dx = 2t dt\)

Khi \(x = 0\) thì \(t = 1\), khi \(x = 3\) thì \(t = 2.\)

Do đó:

\(\displaystyle \int_0^3 {{x \over {\sqrt {1 + x} }}} dx = \int_1^2 {{{{t^2} - 1} \over t}} .2tdt = 2\int_1^2 {({t^2} - 1)dt}\)

\(\displaystyle= 2({{{t^3}} \over 3} - t)\left| {_1^2} \right. = 2({8 \over 3} - 2 - {1 \over 3} + 1) = {8 \over 3} \)

LG b

b) \(\displaystyle\int_1^{64} {{{1 + \sqrt x } \over {\root 3 \of x }}} dx\)

Phương pháp giải:

+) Sử dụng phương pháp đổi biến và các công thức tính tích phân cơ bản để tính tích phân.

+) Chú ý: Khi đổi biến cần đổi cận.

Lời giải chi tiết:

Ta có:

\(\displaystyle\int_1^{64} {{{1 + \sqrt x } \over {\root 3 \of x }}} dx = \int_1^{64} {{{1 + {x^{{1 \over 2}}}} \over {{x^{{1 \over 3}}}}}} dx = \int_1^{64} {({x^{{-1 \over 3}}} + {x^{{1 \over 6}}})dx}\)
\(\displaystyle=({3 \over 2}{x^{{2 \over 3}}} + {6 \over 7}{x^{{7 \over 6}}})\left| {_1^{64}} \right.  = \frac{{1872}}{{14}} - \frac{{33}}{{14}}= {{1839} \over {14}}. \)

LG c

c) \(\int_0^2 {{x^2}} {e^{3x}}dx\)

Phương pháp giải:

+) Sử dụng phương pháp đổi biến và các công thức tính tích phân cơ bản để tính tích phân.

+) Chú ý: Khi đổi biến cần đổi cận.

Lời giải chi tiết:

Ta có:

\(\displaystyle \int_0^2 {{x^2}} {e^{3x}}dx = {1 \over 3}\int_0^2 {{x^2}} d{e^{3x}} \) \(\displaystyle  = {1 \over 3}{x^2}{e^{3x}}\left| {_0^2} \right. - {2 \over 3}\int_0^2 {x{e^{3x}}} dx \) \(=\dfrac{1}{3}\left. {{x^2}{e^{3x}}} \right|_0^2 - \dfrac{2}{9}\int\limits_0^2 {xd\left( {{e^{3x}}} \right)} \) \(\displaystyle = {4 \over 3}{e^6} - {2 \over 9}(x{e^{3x}})\left| {_0^2} \right. + {2 \over {27}}\int_0^2 {{e^{3x}}} d(3x) \)

\(\displaystyle = {4 \over 3}{e^6} - {4 \over 9}{e^6} + {2 \over {27}}{e^{3x}}\left| {_0^2} \right. = {2 \over {27}}(13{e^6} - 1) \)

LG d

d) \(\int_0^\pi  {\sqrt {1 + \sin 2x} } dx\)

Phương pháp giải:

+) Sử dụng phương pháp đổi biến và các công thức tính tích phân cơ bản để tính tích phân.

+) Chú ý: Khi đổi biến cần đổi cận.

Lời giải chi tiết:

Ta có:

\( \sqrt {1 + \sin 2x} = \sqrt {{{\sin }^2}x + {{\cos }^2}x + 2\sin x{\mathop{\rm cosx}\nolimits} }\)

\(= |{\mathop{\rm s}\nolimits} {\rm{inx}} + {\mathop{\rm cosx}\nolimits} | \)\(\displaystyle = \sqrt 2 |\sin (x + {\pi \over 4})| \)

\(=\left\{ \matrix{
\sqrt 2 \sin (x + {\pi \over 4}),x \in \left[ {0,{{3\pi } \over 4}} \right] \hfill \cr 
- \sqrt 2 \sin (x + {\pi \over 4}),x \in \left[ {{{3\pi } \over 4},\pi } \right] \hfill \cr} \right.\) 

Do đó:

\( \displaystyle \int_0^\pi {\sqrt {1 + \sin 2x} } dx = \sqrt 2 \int_0^{{{3\pi } \over 4}} {\sin (x + {\pi \over 4}} )d(x + {\pi \over 4})\) \(\displaystyle  - \sqrt 2 \int_{{{3\pi } \over 4}}^\pi {\sin (x + {\pi \over 4}} )d(x + {\pi \over 4}) \)  \(\displaystyle = - \sqrt 2 \cos (x + {\pi \over 4})\left| {_0^{{{3\pi } \over 4}}} \right. + \sqrt 2 \cos (x + {\pi \over 4})\left| {_{{{3\pi } \over 4}}^\pi } \right. = 2\sqrt 2 \)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.

Góp ý Loigiaihay.com, nhận quà liền tay