Bài 1 trang 127 SGK Giải tích 12


Giải bài 1 trang 127 SGK Giải tích 12. Tính:

Đề bài

Tính \(\displaystyle \int {{{dx} \over {\sqrt {1 - x} }}} \) , kết quả là:

A. \(\displaystyle {C \over {\sqrt {1 - x} }}\)                    B. \(C\sqrt {1 - x} \)

C. \( - 2\sqrt {1 - x}  + C\)        D. \(\displaystyle {2 \over {\sqrt {1 - x} }} + C\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Sử dụng phương pháp đưa vào vi phân để làm bài toán hoặc sử dụng phương pháp đổi biến.

Chú ý nguyên hàm cơ bản: \[\int {\frac{1}{{2\sqrt u }}du}  = \sqrt u  + C\]

Lời giải chi tiết

Ta có:

\(\displaystyle \int {{{dx} \over {\sqrt {1 - x} }}}  =  - \int {{{d(1 - x)} \over {\sqrt {1 - x} }}}  \) \( = -2.\int {\dfrac{{d\left( {1 - x} \right)}}{{2\sqrt {1 - x} }}} \) \( =  - 2\sqrt {1 - x}  + C.\)

Chọn đáp án C.

Cách khác:

Ta có: \(\int {\dfrac{{dx}}{{\sqrt {1 - x} }}}  = \int {\dfrac{{dx}}{{{{\left( {1 - x} \right)}^{\frac{1}{2}}}}}} \)

\( = \int {{{\left( {1 - x} \right)}^{ - \frac{1}{2}}}dx} \) \( =  - \int {{{\left( {1 - x} \right)}^{ - \frac{1}{2}}}d\left( {1 - x} \right)} \) \( =  - \dfrac{{{{\left( {1 - x} \right)}^{\frac{1}{2}}}}}{{\frac{1}{2}}} + C\) \( =  - 2{\left( {1 - x} \right)^{\frac{1}{2}}} + C\) \( =  - 2\sqrt {1 - x}  + C\)

Loigiaihay.com


Bình chọn:
3 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài