Bài 6 trang 127 SGK Giải tích 12


Giải bài 6 trang 127 SGK Giải tích 12. Tính:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính:

LG a

a) \(\displaystyle\int_0^{{\pi  \over 2}} {\cos 2x\sin ^2} xdx\)

Phương pháp giải:

Sử dụng công thức hạ bậc đưa về tích phân các hàm lượng giác cơ bản.

Lời giải chi tiết:

Ta có:

\(\displaystyle \int_0^{{\pi \over 2}} {\cos 2x\sin ^2} xdx \)
\(\displaystyle = {1 \over 2}\int_0^{{\pi \over 2}} {\cos 2x(1 - \cos 2x)dx}\)

\( = \dfrac{1}{2}\int\limits_0^{\frac{\pi }{2}} {\left( {\cos 2x - {{\cos }^2}2x} \right)dx} \)
\(\displaystyle = {1 \over 2}\int_0^{{\pi \over 2}} {\left[ {\cos 2x - {{1 + \cos 4x} \over 2}} \right]} dx\)

\(\displaystyle = {1 \over 4}\int_0^{{\pi \over 2}} {(2\cos 2x - \cos 4x - 1)dx} \)
\(\displaystyle = {1 \over 4}\left[ {\sin 2x - {{\sin 4x} \over 4} - x} \right]_0^{{\pi \over 2}} \displaystyle = {1 \over 4}.(-{\pi \over 2}) \)
\(\displaystyle = {{ - \pi } \over 8} \)

LG b

b) \(\displaystyle\int_{ - 1}^1 {|{2^x}}  - {2^{ - x}}|dx\)

Phương pháp giải:

Xét dấu, phá dấu giá trị tuyệt đối của hàm số dưới dấu tích phân.

Lời giải chi tiết:

Ta có: Xét \({2^x}-{2^{ - x}} ≥ 0 ⇔ x ≥ 0\).

Ta tách thành tổng của hai tích phân:

\(\int_{ - 1}^1 {|{2^x}} - {2^{ - x}}|dx \)

\( = \int\limits_{ - 1}^0 {\left| {{2^x} - {2^{ - x}}} \right|dx}  + \int\limits_0^1 {\left| {{2^x} - {2^{ - x}}} \right|dx} \)

\(= - \int_{ - 1}^0 ( {2^x} - {2^{ - x}})dx \) \(+ \int_0^1 ( {2^x} - {2^{ - x}})dx\)

\(\displaystyle = - ({{{2^x}} \over {\ln 2}} + {{{2^{ - x}}} \over {\ln 2}})\left| {_{ - 1}^0} \right. + ({{{2^x}} \over {\ln 2}} + {{{2^{ - x}}} \over {\ln 2}})\left| {_0^1} \right. \)

\(\begin{array}{l}
= \left( {\dfrac{{ - 2}}{{\ln 2}} + \dfrac{5}{{2\ln 2}}} \right) + \left( {\dfrac{5}{{2\ln 2}} + \dfrac{{ - 2}}{{\ln 2}}} \right)\\
= \dfrac{{ - 4}}{{\ln 2}} + \dfrac{5}{{\ln 2}}
\end{array}\)

\(\displaystyle = {1 \over {\ln 2}}  \)

LG c

c) \(\displaystyle\int_1^2 {{{(x + 1)(x + 2)(x + 3)} \over {{x^2}}}} dx\)

Phương pháp giải:

Biến đổi hàm số dưới dấu tích phân về các hàm đa thức, phân thức cơ bản và tính tích phân.

Lời giải chi tiết:

Ta có:

\(\displaystyle \int_1^2 {{{(x + 1)(x + 2)(x + 3)} \over {{x^2}}}} dx \) \(\displaystyle = \int_1^2 {{{{x^3} + 6{x^2} + 11x + 6} \over {{x^2}}}dx} \) 
\(\displaystyle = \int_1^2 {(x + 6 + {{11} \over x}} + {6 \over {{x^2}}})dx\)

\(\displaystyle = \left[ {{{{x^2}} \over 2} + 6x + 11\ln |x| - {6 \over x}} \right]\left| {_1^2} \right. \) 
\( \displaystyle = (2 + 12 + 11\ln 2 - 3) - ({1 \over 2} + 6 - 6) \)

\(\displaystyle = {{21} \over 2} + 11\ln 2 \)

LG d

d) \(\displaystyle\int_0^2 {{1 \over {{x^2} - 2x - 3}}} dx\)

Phương pháp giải:

Biến đổi hàm số dưới dấu tích phân về dạng tổng, hiệu hai phân thức đơn giản đã biết cách tính tích phân.

Lời giải chi tiết:

Ta có: 

\(\begin{array}{l}
\int\limits_0^2 {\dfrac{1}{{{x^2} - 2x - 3}}dx \\= \int\limits_0^2 {\dfrac{1}{{\left( {x + 1} \right)\left( {x - 3} \right)}}dx} } \\= \int\limits_0^2 {\dfrac{{\left( {x + 1} \right) - \left( {x - 3} \right)}}{{4\left( {x + 1} \right)\left( {x - 3} \right)}}dx}  \\= \dfrac{1}{4}\int\limits_0^2 {\left[ {\dfrac{{x + 1}}{{\left( {x + 1} \right)\left( {x - 3} \right)}} - \dfrac{{x - 3}}{{\left( {x + 1} \right)\left( {x - 3} \right)}}} \right]dx} 
\\= \dfrac{1}{4}\int\limits_0^2 {\left( {\dfrac{1}{{x - 3}} - \dfrac{1}{{x + 1}}} \right)dx} \\
= \left. {\dfrac{1}{4}\left[ {\ln \left| {x - 3} \right| - \ln \left| {x + 1} \right|} \right]} \right|_0^2\\
= \dfrac{1}{4}\left[ { - \ln 3 - \ln 3} \right] = - \dfrac{1}{2}\ln 3.
\end{array}\)

LG e

e) \(\displaystyle\int_0^{{\pi  \over 2}} {{{({\mathop{\rm s}\nolimits} {\rm{inx}} + {\mathop{\rm cosx}\nolimits} )}^2}dx} \)

Phương pháp giải:

Thu gọn biểu thức \( (\sin x+\cos x)^2\) đưa về các hàm số lượng giác cơ bản.

Lời giải chi tiết:

Ta có: 

\(\eqalign{
& \int_0^{{\pi \over 2}} {{{({\mathop{\rm s}\nolimits} {\rm{inx}} + {\mathop{\cos x}\nolimits} )}^2}dx} \cr &= \int\limits_0^{\frac{\pi }{2}} {\left( {{{\sin }^2}x + 2\sin x\cos x + {{\cos }^2}x} \right)dx} \cr &= \int_0^{{\pi \over 2}} {(1 + \sin 2x)dx} \cr 
& = \left[ {x - {{\cos 2x} \over 2}} \right]\left| {_0^{{\pi \over 2}}} \right. = {\pi \over 2} + 1. \cr} \)

LG g

g) \(\displaystyle\int_0^\pi  {{{(x + {\mathop{\rm s}\nolimits} {\rm{inx}})}^2}} dx\)

Phương pháp giải:

Khai triển biểu thức dưới dấu tích phân, kết hợp với công thức hạ bậc, phương pháp tích phân từng phần để tính tích phân.

Lời giải chi tiết:

Ta có: 

\(\begin{array}{l}
\int\limits_0^\pi {{{\left( {x + \sin x} \right)}^2}dx} \\
= \int\limits_0^\pi {\left( {{x^2} + 2x\sin x + {{\sin }^2}x} \right)dx} \\
= \int\limits_0^\pi {{x^2}dx} + 2\int\limits_0^\pi {x\sin xdx} + \int\limits_0^\pi {{{\sin }^2}xdx} \\
= I + 2J + K
\end{array}\)

Tính \(I = \int\limits_0^\pi  {{x^2}dx}  = \left. {\dfrac{{{x^3}}}{3}} \right|_0^\pi  = \dfrac{{{\pi ^3}}}{3}\)

Tính :\(J = \int_0^\pi  {x\sin xdx} \)

Đặt \(\left\{ \begin{array}{l}
u = x\\
dv = \sin xdx
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
du = dx\\
v = - \cos x
\end{array} \right.\)

Suy ra:

\(J = \left[ { - x{\mathop{\rm cosx}\nolimits} } \right]\left| {_0^\pi } \right. + \int_0^\pi  {{\mathop{\rm cosxdx}\nolimits}  = \pi  + \left[ {{\mathop{\rm s}\nolimits} {\rm{inx}}} \right]} \left| {_0^\pi } \right. = \pi \)

Tính K:

\(\begin{array}{l}
K = \int\limits_0^\pi {{{\sin }^2}xdx} \\
= \int\limits_0^\pi {\dfrac{{1 - \cos 2x}}{2}dx} \\
= \dfrac{1}{2}\int\limits_0^\pi {\left( {1 - \cos 2x} \right)dx} \\
= \dfrac{1}{2}\left. {\left( {x - \dfrac{{\sin 2x}}{2}} \right)} \right|_0^\pi \\
= \dfrac{\pi }{2}
\end{array}\)

Do đó: 

\(\eqalign{
& I = {{{\pi ^3}} \over 3} + 2\pi + {\pi \over 2} = \dfrac{{{\pi ^3}}}{3} + \dfrac{{5\pi }}{2} \cr} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.7 trên 19 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài