Bài 6 trang 127 SGK Giải tích 12

Bình chọn:
3.8 trên 17 phiếu

Giải bài 6 trang 127 SGK Giải tích 12. Tính:

Đề bài

Tính:

a) \(\displaystyle\int_0^{{\pi  \over 2}} {\cos 2xsi{n^2}} xdx\)

b) \(\displaystyle\int_{ - 1}^1 {|{2^x}}  - {2^{ - x}}|dx\)

c) \(\displaystyle\int_1^2 {{{(x + 1)(x + 2)(x + 3)} \over {{x^2}}}} dx\)

d) \(\displaystyle\int_0^2 {{1 \over {{x^2} - 2x - 3}}} dx\)

e) \(\displaystyle\int_0^{{\pi  \over 2}} {{{({\mathop{\rm s}\nolimits} {\rm{inx}} + {\mathop{\rm cosx}\nolimits} )}^2}dx} \)

g) \(\displaystyle\int_0^\pi  {{{(x + {\mathop{\rm s}\nolimits} {\rm{inx}})}^2}} dx\)

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức hạ bậc đưa về tích phân các hàm lượng giác cơ bản.

b) Xét dấu, phá dấu giá trị tuyệt đối của hàm số dưới dấu tích phân.

c) Biến đổi hàm số dưới dấu tích phân về các hàm đa thức, phân thức cơ bản và tính tích phân.

d) Biến đổi hàm số dưới dấu tích phân về dạng tổng, hiệu hai phân thức đơn giản đã biết cách tính tích phân.

e) Thu gọn biểu thức \( (\sin x+\cos x)^2\) đưa về các hàm số lượng giác cơ bản.

g) Khai triển biểu thức dưới dấu tích phân, kết hợp với công thức hạ bậc, phương pháp tích phân từng phần để tính tích phân.

Lời giải chi tiết

a) Ta có:

\(\displaystyle \int_0^{{\pi \over 2}} {\cos 2xsi{n^2}} xdx = {1 \over 2}\int_0^{{\pi \over 2}} {\cos 2x(1 - \cos 2x)dx}\)
\(\displaystyle = {1 \over 2}\int_0^{{\pi \over 2}} {\left[ {\cos 2x - {{1 + \cos 4x} \over 2}} \right]} dx\)

\(\displaystyle = {1 \over 4}\int_0^{{\pi \over 2}} {(2\cos 2x - \cos 4x - 1)dx} \)
\(\displaystyle = {1 \over 4}\left[ {\sin 2x - {{\sin 4x} \over 4} - x} \right]_0^{{\pi \over 2}} \displaystyle = - {1 \over 4}.{\pi \over 2} = {{ - \pi } \over 8} \)

b) Ta có: Xét \({2^x}-{2^{ - x}} ≥ 0 ⇔ x ≥ 0\).

Ta tách thành tổng của hai tích phân:

\(\int_{ - 1}^1 {|{2^x}} - {2^{ - x}}|dx = - \int_{ - 1}^0 ( {2^x} - {2^{ - x}})dx \)\(+ \int_0^1 ( {2^x} - {2^{ - x}})dx\)
\(\displaystyle = - ({{{2^x}} \over {\ln 2}} + {{{2^{ - x}}} \over {\ln 2}})\left| {_{ - 1}^0} \right. + ({{{2^x}} \over {\ln 2}} + {{{2^{ - x}}} \over {\ln 2}})\left| {_0^1} \right. \) \(\displaystyle = {1 \over {\ln 2}}  \)

c) Ta có:

\(\displaystyle \int_1^2 {{{(x + 1)(x + 2)(x + 3)} \over {{x^2}}}} dx \) \(\displaystyle = \int_1^2 {{{{x^3} + 6{x^2} + 11x + 6} \over {{x^2}}}dx} \) 
\(\displaystyle = \int_1^2 {(x + 6 + {{11} \over x}} + {6 \over {{x^2}}})dx\)

\(\displaystyle = \left[ {{{{x^2}} \over 2} + 6x + 11\ln |x| - {6 \over x}} \right]\left| {_1^2} \right. \) 
\( \displaystyle = (2 + 12 + 11\ln 2 - 3) - ({1 \over 2} + 6 - 6) \)

\(\displaystyle = {{21} \over 2} + 11\ln 2 \)

 d) Ta có: 

\(\begin{array}{l}
\int\limits_0^2 {\dfrac{1}{{{x^2} - 2x - 3}}dx = \int\limits_0^2 {\dfrac{1}{{\left( {x + 1} \right)\left( {x - 3} \right)}}dx} } \\
= \dfrac{1}{4}\int\limits_0^2 {\left( {\dfrac{1}{{x - 3}} - \dfrac{1}{{x + 1}}} \right)dx} \\
= \left. {\dfrac{1}{4}\left[ {\ln \left| {x - 3} \right| - \ln \left| {x + 1} \right|} \right]} \right|_0^2\\
= \dfrac{1}{4}\left[ { - \ln 3 - \ln 3} \right] = - \dfrac{1}{2}\ln 3.
\end{array}\)

 e) Ta có: 

\(\eqalign{
& \int_0^{{\pi \over 2}} {{{({\mathop{\rm s}\nolimits} {\rm{inx}} + {\mathop{\rm cosx}\nolimits} )}^2}dx} = \int_0^{{\pi \over 2}} {(1 + \sin 2x)dx} \cr
& = \left[ {x - {{\cos 2x} \over 2}} \right]\left| {_0^{{\pi \over 2}}} \right. = {\pi \over 2} + 1. \cr} \)

 g) Ta có: 

\(\eqalign{
& I = \int_0^\pi {{{(x + {\mathop{\rm s}\nolimits} {\rm{inx)}}}^2}} dx\int_0^\pi {({x^2}} + 2x\sin x + {\sin ^2}x)dx \cr
& = \left[ {{{{x^3}} \over 3}} \right]\left| {_0^\pi } \right. + 2\int_0^\pi {x\sin xdx + {1 \over 2}} \int_0^\pi {(1 - \cos 2x)dx}. \cr} \)

Tính :\(J = \int_0^\pi  {x\sin xdx} \)

Đặt \(u = x ⇒ u’ = 1\) và \(v’ = sinx ⇒ v = -cos x\)

Suy ra:

\(J = \left[ { - x{\mathop{\rm cosx}\nolimits} } \right]\left| {_0^\pi } \right. + \int_0^\pi  {{\mathop{\rm cosxdx}\nolimits}  = \pi  + \left[ {{\mathop{\rm s}\nolimits} {\rm{inx}}} \right]} \left| {_0^\pi } \right. = \pi \)

Do đó: 

\(\eqalign{
& I = {{{\pi ^3}} \over 3} + 2\pi + {1 \over 2}\left[ {x - {{\sin 2x} \over 2}} \right]\left| {_0^{{\pi }}} \right. \cr
& = {{{\pi ^3}} \over 3} + 2\pi + {\pi \over 2} = {{2{\pi ^3} + 15\pi } \over 6}. \cr} \)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.