Bài 1 trang 126 SGK Giải tích 12

Bình chọn:
3.3 trên 3 phiếu

Giải bài 1 trang 126 SGK Giải tích 12. Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng

Đề bài

a) Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng

b) Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa.

Lời giải chi tiết

a) Kí hiệu \(K\) là khoảng hoặc đoạn hoặc nửa đoạn của tập số thực \(K\)

Hàm số \(F(x)\) gọi là một nguyên hàm của hàm số \(f(x)\) trên khoảng \(K\) nếu \(∀x ∈ K\) ta có \(F’(x) = f(x).\)

b) Phương pháp tính nguyên hàm toàn phần dựa trên cơ sở định lí:

Nếu hai hàm số  \(u = u(x)\) và \(v = v(x)\) có đạo hàm liên tục trên K thì :

 \(\int {u(x).v'(x)dx = u(x)v(x) - \int {u'(x)v(x)dx} } \) (3)

Để tính nguyên hàm toàn phần ta cần phân tích \(f(x)\) thành \(g(x).h(x)\),

- Chọn một nhân tử đặt bằng \(u\) còn nhân tử kia đặt là \(v’\)

- Tìm \(u’\) và \(v\),

- Áp dụng công thức trên, ta đưa tích phân ban đầu về một tích phân mới đơn giản hơn.

Ta cần chú ý các cách đặt thường xuyên như sau:

 

\(\int {P(x){e^x}dx} \) 

 \(\int {P(x)\sin xdx} \)

 \(\int P(x)cosx dx \)

 \(\int P(x)lnx dx \)

\(u\)

\(P(x)\)

\(P(x)\)

\(P(x)\)

\(ln(x)\)

\(dv\)

\(e^xdx\)

\(sinxdx\)

\(cosx dx\)

\(P(x) dx\)

 Ví dụ:

Tìm nguyên hàm của hàm số \(f(x) = (3x^3- 2x) lnx\)

Giải

Đặt \(u = lnx\Rightarrow u' = {1 \over x}\) 

\( v' = 3{x^3} - 2x \Rightarrow v = {3 \over 4}{x^4} - {x^2}. \)

Suy ra: 

\(\eqalign{
& \int {f(x)dx = ({3 \over 4}} {x^4} - {x^2})\ln x - \int ({{3 \over 4}} {x^3} - x)dx \cr
& = ({3 \over 4}{x^4} - {x^2})\ln x - {3 \over {16}}{x^4} + {1 \over 2}{x^2} + C \cr} \)

 

loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan