Bài 5 trang 128 SGK Giải tích 12


Giải bài 5 trang 128 SGK Giải tích 12. Diện tích hình phẳng giới hạn bởi các đường cong:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Diện tích hình phẳng giới hạn bởi các đường cong

LG a

a) \(y =x^3\) và \(y = x^5\) bằng:

A. \(0\)             B. \(-4\)            C. \(\displaystyle{1 \over 6}\)      D. \(2\)

Phương pháp giải:

+) Hình phẳng được giới hạn bởi đường các đồ thị hàm số \(y=f(x);\) \(y=g(x)\) và các đường thẳng \(x=a; \, \, x=b \, (a<b)\) có diện tích được tính bởi công thức:  \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx.} \)

Lời giải chi tiết:

Phương trình hoành độ giao điểm của hai đường thẳng đã cho là:

\( x^5= x^3⇔ x = 0\) hoặc \(x = ±1.\)

Do đó: Diện tích hình phẳng cần tìm là:

\( \begin{array}{l}
S = \int\limits_{ - 1}^1 {\left| {{x^3} - {x^5}} \right|dx} \\
= \int\limits_{ - 1}^0 {\left| {{x^3} - {x^5}} \right|dx} + \int\limits_0^1 {\left| {{x^3} - {x^5}} \right|dx} 
\end{array}\)

\(\begin{array}{l}
 =\left| {\int\limits_{ - 1}^0 {\left( {{x^3} - {x^5}} \right)} dx} \right| + \left| {\int\limits_0^1 {\left( {{x^3} - {x^5}} \right)dx} } \right|\\
\;\; = \left| {\left. {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{{x^6}}}{6}} \right)} \right|_{ - 1}^0} \right| + \left| {\left. {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{{x^6}}}{6}} \right)} \right|_0^1} \right|\\
\; = \left| { - \dfrac{1}{4} + \dfrac{1}{6}} \right| + \left| {\dfrac{1}{4} - \dfrac{1}{6}} \right| = \dfrac{1}{6}.
\end{array}\)

Chọn đáp án C

LG b

b) \(y = x + \sin x\) và \(y = x\) \( (0 ≤ x ≤ 2π).\)

A. \(-4\)            B. \(4\)             C. \(0\)        D. \(1\)

Lời giải chi tiết:

Phương trình hoành độ giao điểm của hai đường thẳng là:

\(x + \sin x = x\) (\(0 ≠ x ≠ 2x\))

\( ⇔ \sin x = 0 ⇔ x = 0; x = π;  x = 2π\)

Do đó, diện tích hình bằng là:

\(\begin{array}{l}
S = \int\limits_0^{2\pi } {\left| {x + \sin x - x} \right|dx} \\
= \int\limits_0^{2\pi } {\left| {\sin x} \right|dx} \\
= \int\limits_0^\pi {\left| {\sin x} \right|dx} + \int\limits_\pi ^{2\pi } {\left| {\sin x} \right|dx}
\end{array}\)

\(\eqalign{
& = \left| {\int_0^\pi {\sin {\rm{x}}dx} } \right| + \left| {\int_\pi ^{2\pi } {\sin {\rm{x}}dx} } \right| \cr 
& = \left| {\left[ { - \cos x } \right]\left| {_0^\pi } \right.} \right| + \left| {\left[ { - {\mathop{\rm cosx}\nolimits} } \right]\left| {_\pi ^{2\pi }} \right.} \right| = 2 + 2 = 4. \cr} \)

Chọn đáp án B   

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3 trên 4 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài