Bài 2 trang 128 SGK Giải tích 12


Giải bài 2 trang 128 SGK Giải tích 12. Tính:

Đề bài

Tính \(\int {{2^{\sqrt x }}} {{\ln 2} \over {\sqrt x }}dx\) , kết quả sai là:

A. \({2^{\sqrt x  + 1}} + C\)            B. \(2({2^{\sqrt x }} - 1) + C\)

C. \(2({2^{\sqrt x }} + 1) + C\)   D. \({2^{\sqrt x }} + C\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Đổi biến tìm nguyên hàm đã cho.

+) Hàm số \(F(x)\) là nguyên hàm của hàm số \(f(x)\) thì hàm số \(F(x) + C\) cũng là nguyên hàm của hàm số.

Lời giải chi tiết

Đặt \(t = \sqrt x \) \( \Rightarrow dt = \dfrac{1}{{2\sqrt x }}dx \Rightarrow \dfrac{{dx}}{{\sqrt x }} = 2dt\). Khi đó,

\(\int {{2^{\sqrt x }}.\dfrac{{\ln 2}}{{\sqrt x }}dx} \) \( = \int {{2^t}.\ln 2.2dt} \) \( = 2.\int {d\left( {{2^t}} \right)} \) \( = {2.2^t} + C = {2.2^{\sqrt x }} + C\).

Do đó D sai.

Chọn đáp án D

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.7 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài