Bài 4 trang 126 SGK Giải tích 12


Giải bài 4 trang 126 SGK Giải tích 12. Tính:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính:

LG a

a) \(\int {(2 - x)\sin {\rm{x}}dx} \)

Phương pháp giải:

+) Sử dụng các công thức nguyên hàm cơ bản và các phương pháp tính nguyên hàm để làm bài toán.

Lời giải chi tiết:

Đặt \(u = 2 – x; \, \,  dv = sinx dx\)

\(\Rightarrow du = -dx; \, \,  v = -cosx\)

Khi đó ta có:

\(\eqalign{
& \int {(2 - x)\sin {\rm{x}}dx} \cr & = \left( {2 - x} \right)\left( { - \cos x} \right) - \int {\left( { - \cos x} \right)\left( { - dx} \right)} \cr &= (x - 2)cosx - \int {{\mathop{\rm cosxdx}\nolimits} } \cr 
& = (x - 2)cosx - s{\rm{inx}} + C \cr} \)

LG b

b) \(\displaystyle\int {{{{{(x + 1)}^2}} \over {\sqrt x }}} dx\)

Lời giải chi tiết:

Điều kiện: \(x > 0\)

Ta có:

\(\eqalign{
& \int {{{{{(x + 1)}^2}} \over {\sqrt x }}} dx = \int {{{{x^2} + 2x + 1} \over {{x^{{1 \over 2}}}}}} dx \cr 
& = \int {({x^{{3 \over 2}}}} + 2{x^{{1 \over 2}}} + {x^{{-1 \over 2}}})dx \cr 
& = \dfrac{{{x^{\frac{5}{2}}}}}{{\frac{5}{2}}} + 2.\dfrac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}} + \dfrac{{{x^{\frac{1}{2}}}}}{{\frac{1}{2}}} + C \cr &= {2 \over 5}{x^{{5 \over 2}}} + {4 \over 3}{x^{{3 \over 2}}} + 2{x^{{1 \over 2}}} + C. \cr} \)

\(\begin{array}{l}
= \dfrac{2}{5}\sqrt {{x^5}} + \dfrac{4}{3}\sqrt {{x^3}} + 2\sqrt x + C\\
= \dfrac{2}{5}{x^2}\sqrt x + \dfrac{4}{3}x\sqrt x + 2\sqrt x + C
\end{array}\)

LG c

c) \(\displaystyle\int {{{{e^{3x}} + 1} \over {{e^x} + 1}}} dx\)

Lời giải chi tiết:

Ta có: \({e^{3x}} + 1={({e^x})^3} + 1 \) \(= ({e^x} + 1)({e^{2x}}-{e^x} +1)\)

Do đó:

\(\eqalign{
& \int {{{{e^{3x}} + 1} \over {{e^x} + 1}}} dx \cr &  = \int {\dfrac{{\left( {{e^x} + 1} \right)\left( {{e^{2x}} - {e^x} + 1} \right)}}{{{e^x} + 1}}dx} \cr &= \int {\left( {{e^{2x}}-{\rm{ }}{e^x} + {\rm{ }}1} \right)} dx \cr 
& = {1 \over 2}{e^{2x}} - {e^x} + x + C .\cr} \)

LG d

d) \(\displaystyle\int {{1 \over {{{(\sin x + {\mathop{\rm cosx}\nolimits} )}^2}}}} dx\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \int {{1 \over {{{(\sin x + {\mathop{\rm cosx}\nolimits} )}^2}}}} dx\cr &   = \int {\dfrac{{dx}}{{{{\left[ {\sqrt 2 \cos \left( {x - \dfrac{\pi }{4}} \right)} \right]}^2}}}} \cr &= \int {{{d(x - {\pi \over 4})} \over {2{{\cos }^2}(x - {\pi \over 4})}}} \cr &= {1 \over 2}\tan (x - {\pi \over 4}) + C \cr} \)

Cách khác:

Ở bước đưa vào vi phân các em cũng có thể làm như sau:

Đặt \(t = x - \dfrac{\pi }{4} \Rightarrow dt = dx\)

\(\begin{array}{l}
\int {\dfrac{{dx}}{{2{{\cos }^2}\left( {x - \dfrac{\pi }{4}} \right)}}} = \int {\dfrac{{dt}}{{2{{\cos }^2}t}}} \\
= \dfrac{1}{2}\int {\dfrac{{dt}}{{{{\cos }^2}t}}} = \dfrac{1}{2}\tan t + C\\
= \dfrac{1}{2}\tan \left( {x - \dfrac{\pi }{4}} \right) + C
\end{array}\)

LG e

e) \(\displaystyle\int {{1 \over {\sqrt {1 + x}  + \sqrt x }}} dx\)

Lời giải chi tiết:

Nhân tử và mẫu với biểu thức liên hợp, ta có:

\(\eqalign{
& \int {{1 \over {\sqrt {1 + x} + \sqrt x }}} dx \cr &  = \int {\dfrac{{\sqrt {1 + x}  - \sqrt x }}{{\left( {\sqrt {1 + x}  + \sqrt x } \right)\left( {\sqrt {1 + x}  - \sqrt x } \right)}}dx}  \cr & = \int {\dfrac{{\sqrt {1 + x}  - \sqrt x }}{{1 + x - x}}dx} \cr &= \int {(\sqrt {1 + x} } - \sqrt x )dx \cr 
& = \int {\left[ {{{(1 + x)}^{{1 \over 2}}} - {x^{{1 \over 2}}}} \right]} dx \cr & = \dfrac{{{{\left( {1 + x} \right)}^{\frac{3}{2}}}}}{{\frac{3}{2}}} - \dfrac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}} + C\cr &= {2 \over 3}{(x + 1)^{{3 \over 2}}} - {2 \over 3}{x^{{3 \over 2}}} + C \cr} \)

\(\begin{array}{l}
= \dfrac{2}{3}\sqrt {{{\left( {x + 1} \right)}^3}} - \dfrac{2}{3}\sqrt {{x^3}} + C\\
= \dfrac{2}{3}\left( {x + 1} \right)\sqrt {x + 1} - \dfrac{2}{3}x\sqrt x + C
\end{array}\)

LG g

g) \(\displaystyle\int {{1 \over {(x + 1)(2 - x)}}} dx\)

Lời giải chi tiết:

Ta có:

\(\dfrac{1}{{\left( {x + 1} \right)\left( {2 - x} \right)}}\) \( = \dfrac{{x + 1 + 2 - x}}{{3\left( {x + 1} \right)\left( {2 - x} \right)}} \) \( = \dfrac{1}{3}\left( {\dfrac{{x + 1}}{{\left( {x + 1} \right)\left( {2 - x} \right)}} + \dfrac{{2 - x}}{{\left( {x + 1} \right)\left( {2 - x} \right)}}} \right) \) \( = \dfrac{1}{3}\left( {\dfrac{1}{{2 - x}} + \dfrac{1}{{x + 1}}} \right)\)

\(\eqalign{
& \int {{1 \over {(x + 1)(2 - x)}}} dx \cr 
&= {1 \over 3}\int {({1 \over {1 + x}}} + {1 \over {2 - x}})dx \cr 
&  = \dfrac{1}{3}\left( {\ln \left| {1 + x} \right| - \ln \left| {2 - x} \right| + C} \right)\cr 
&= {1 \over 3}\ln |{{1 + x} \over {2 - x}}| + C .\cr}.\)

Loigiaihay.com


Bình chọn:
2.7 trên 9 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.


Gửi bài