Câu 5.52 trang 187 sách bài tập Đại số và Giải tích 11 Nâng cao


Cho hàm số

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số

        \(f\left( x \right) = x + {{{x^2}} \over 2} + {{{x^3}} \over 3} + ... + {{{x^{n + 1}}} \over {n + 1}}\,\,\left( {n \in N} \right)\)

Tìm

LG a

\(\mathop {\lim }\limits_{x \to 1} f'\left( x \right)\)        

Phương pháp giải:

Ta có

                 \(f'\left( x \right) = 1 + x + {x^2} + ... + {x^n}\)

Áp dụng công thức tổng quát của cấp số nhân cới số hạng đầu \({u_1} = 1\) và công bội \(q = x \ne 1\) ta được:

                        \(f'\left( x \right) = {{1 - {x^{n + 1}}} \over {1 - x}}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 1} f'\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {1 + x + {x^2} + ... + {x^n}} \right) = n + 1\)                     

LG b

\(\mathop {\lim }\limits_{x \to 2} f'\left( x \right)\)             

Phương pháp giải:

Ta có

                 \(f'\left( x \right) = 1 + x + {x^2} + ... + {x^n}\)

Áp dụng công thức tổng quát của cấp số nhân cới số hạng đầu \({u_1} = 1\) và công bội \(q = x \ne 1\) ta được:

                        \(f'\left( x \right) = {{1 - {x^{n + 1}}} \over {1 - x}}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 2} f'\left( x \right) = \mathop {\lim }\limits_{x \to 2} {{1 - {x^{n + 1}}} \over {1 - x}} = {{1 - {2^{n + 1}}} \over {1 - 2}} = {2^{n + 1}} - 1\)

LG c

\(\mathop {\lim }\limits_{x \to \infty } f'\left( {{1 \over 2}} \right)\)  

Phương pháp giải:

Ta có

                 \(f'\left( x \right) = 1 + x + {x^2} + ... + {x^n}\)

Áp dụng công thức tổng quát của cấp số nhân cới số hạng đầu \({u_1} = 1\) và công bội \(q = x \ne 1\) ta được:

                        \(f'\left( x \right) = {{1 - {x^{n + 1}}} \over {1 - x}}\)

Lời giải chi tiết:

 \(\mathop {\lim }\limits_{x \to \infty } f'\left( {{1 \over 2}} \right) = \mathop {\lim }\limits_{x \to \infty } {{1 - {{\left( {{1 \over 2}} \right)}^n}} \over {1 - {1 \over 2}}} = 2\)(vì\(\mathop {\lim }\limits_{n \to  + \infty } {\left( {{1 \over 2}} \right)^{n + 1}} = 0\))

LG d

\(\mathop {\lim }\limits_{x \to \infty } f'\left( 3 \right)\)

Phương pháp giải:

Ta có

                 \(f'\left( x \right) = 1 + x + {x^2} + ... + {x^n}\)

Áp dụng công thức tổng quát của cấp số nhân cới số hạng đầu \({u_1} = 1\) và công bội \(q = x \ne 1\) ta được:

                        \(f'\left( x \right) = {{1 - {x^{n + 1}}} \over {1 - x}}\)

Lời giải chi tiết:

 \(\mathop {\lim }\limits_{x \to \infty } f'\left( 3 \right) = \mathop {\lim }\limits_{x \to \infty } {{1 - {3^{n + 1}}} \over {1 - 3}} = \mathop {\lim }\limits_{x \to \infty } {1 \over 2}\left( {{3^{n + 1}} - 1} \right) =  + \infty \)

(vì \(\mathop {\lim }\limits_{n \to \infty } {\left( {{1 \over 3}} \right)^{n + 1}} = 0\) suy ra\(\mathop {\lim }\limits_{n \to \infty } {3^{n + 1}} =  + \infty \))

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập chương V - Đạo hàm

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài