Câu 5.41 trang 186 sách bài tập Đại số và Giải tích 11 Nâng cao


Cho hàm số

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số

             \(f\left( x \right) = \left\{ \matrix{{x^2}\,\,\,\,\,khi\,\,\,x \ge 0 \hfill \cr - {x^3} + bx + c\,\,\,khi\,\,x > 0 \hfill \cr}  \right.\)

LG a

Tìm điều kiện của b và c để \(f\left( x \right)\) liên tục tại \({x_0} = 0\)

Giải chi tiết:

Hàm số liên tục tại điểm \(x = 0\) nếu \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\) hay

\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = f\left( 0 \right)\)

ta có

 \(\eqalign{& \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} {x^2} = 0  \cr& \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( { - {x^3} + bx + c} \right) = c  \cr& f\left( 0 \right) = {0^2} = 0 \cr} \)

Vậy hàm số liên tục tại điểm \(x = 0\) nếu \(c = 0\) còn b tùy ý.

LG b

Xác định b và c để \(f\left( x \right)\) có đạo hàm tại \({x_0} = 0\) và tính \(f'\left( 0 \right)\)

Giải chi tiết:

Hàm số có đạo hàm tại điểm \(x = 0\) thì nó liên tục tại điểm đó ( suy ra \(c = 0\)) và có giới hạn hữu hạn

            \(\mathop {\lim }\limits_{x \to 0} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)

Ta có

\(\eqalign{& \mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ - }} {{{x^2}} \over x}\cr& = \mathop {\lim }\limits_{x \to {0^ - }} x = 0  \cr& \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right)} \over x} \cr&= \mathop {\lim }\limits_{x \to {0^ + }} {{ - {x^3} + bx} \over x}  \cr&  = \mathop {\lim }\limits_{x \to {0^ + }} \left( { - {x^2}} \right) + \mathop {\lim }\limits_{x \to {0^ + }} b = b \cr} \)

Để tồn tại giới hạn hữu hạn (1) thì ta phải có

                        \(\mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}}\)

Suy ra \(b = 0\)

Vậy hàm số có đạo hàm tại \(x = 0\) khi và chỉ khi \(b = c = 0\). Khi đó, ta có \(f'\left( 0 \right) = 0\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập chương V - Đạo hàm

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài