Bài 5 trang 6 SBT Hình Học 11 nâng cao


Giải bài 5 trang 6 sách bài tập Hình Học 11 nâng cao. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác DNM nằm trên (O; R).

Đề bài

Cho tứ giác ABCD nội tiếp đường tròn (O; R) trong đó AD = R. Dựng các hình bình hành DABM và DACN. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác DNM nằm trên (O; R).

Lời giải chi tiết

Theo giả thiết ta có:

\(\overrightarrow {AD}  = \overrightarrow {BM}  = \overrightarrow {CN} \)

Vì vậy, phép tịnh tiến theo vecto \(\overrightarrow {AD} \) biến tam giác ABC thành tam giác DMN.

Suy ra, nếu O’ là tâm đường tròn ngoại tiếp tam giác DMN thì phép tịnh tiến đó biến O thành O’, tức là:

\(\overrightarrow {OO'}  = \overrightarrow {AD} \)

Do đó:

OO' = AD = R

Và vì vậy O’ nằm trên (O; R).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí