Câu 3.41 trang 147 sách bài tập Giải tích 12 Nâng cao


Đề bài

Đặt \({I_n} = \int\limits_0^{{\pi  \over 2}} {{{\sin }^n}xdx} \). Chứng minh rằng \({I_n} = {{n - 1} \over n}{I_{n - 2}}\). Từ đó hãy tính \({I_6}\) và \({I_7}\) 

Lời giải chi tiết

\({I_6} = {{5\pi } \over {32}},{I_7} = {{16} \over {35}}\)

Hướng dẫn: Vận dụng công thức tính tích phân từng phần tương tự như bài 3.40.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.