Câu 3.39 trang 147 sách bài tập Giải tích 12 Nâng cao


Tính các tích phân sau:

Lựa chọn câu để xem lời giải nhanh hơn

Tính các tích phân sau:

LG a

\(\int\limits_0^{{\pi  \over 2}} {\left( {2x - 1} \right){\rm{cos}}xdx} \)

Giải chi tiết:

\(\pi  - 3\)                            

Hướng dẫn: Sử dụng phương pháp tích phân từng phần với \(u = 2x - 1,v' = c{\rm{os}}x\)

LG b

\(\int\limits_0^\pi  {{x^3}\sin xdx} \)

Giải chi tiết:

\({\pi ^3} - {1 \over 2}\)

Hướng dẫn: Sử dụng phương pháp tích phân từng phần với \(u = {x^3},v' = \sin x\)

LG c

\(\int\limits_0^1 {x\ln \left( {1 + {x^2}} \right)dx} \)

Giải chi tiết:

\(\ln 2 - {1 \over 2}\)                                   

Hướng dẫn: Trước hết biến đổi \(t = 1 + {x^2}\). Tích phân cần tìm bằng \({1 \over 2}\int\limits_1^2 {\ln tdt} \) .Sau đó sử dụng tích phân từng phần với \(u = \ln t,v' = 1\)

LG d

\(\int\limits_1^e {{x^2}\ln xdx} \)

Giải chi tiết:

\({{2{e^3} + 1} \over 9}\)

Hướng dẫn: Sử dụng phương pháp tích phân từng phần với \(u = \ln x,v' = {x^2}\)

LG e

\(\int\limits_0^1 {x{e^x}dx} \)

Giải chi tiết:

1

Hướng dẫn: Sử dụng phương pháp tích phân từng phần với \(u = x,v' = {e^x}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài