Câu 3.37 trang 146 sách bài tập Giải tích 12 Nâng cao>
Tính các tích phân sau:
Tính các tích phân sau:
LG a
\(\int\limits_1^2 {x\sqrt {{x^2} + 3} dx} \)
Lời giải chi tiết:
\({{7\sqrt 7 - 8} \over 3}\)
LG b
\(\int\limits_{ - 1}^1 {{{\left( {3x + 2} \right)}^4}dx} \)
Lời giải chi tiết:
\(208,4\)
LG c
\(\int\limits_0^{{\pi \over 2}} {{1 \over {1 + c{\rm{os}}x}}dx} \)
Lời giải chi tiết:
1
Đặt \(u = {{\tan x} \over 2}\). Khi đó \(du = {{dx} \over {2{{\cos }^2}{x \over 2}}}\) , suy ra \(dx = {{2du} \over {1 + {u^2}}}\)
\(1 + c{\rm{os}}x = 2{\cos ^2}{x \over 2} = {2 \over {1 + {u^2}}}\). Vậy tích phân cần tính bằng
\(\int\limits_0^1 {du = 1} \)
Loigiaihay.com
- Câu 3.38 trang 147 sách bài tập Giải tích 12 Nâng cao
- Câu 3.39 trang 147 sách bài tập Giải tích 12 Nâng cao
- Câu 3.40 trang 147 sách bài tập Giải tích 12 Nâng cao
- Câu 3.41 trang 147 sách bài tập Giải tích 12 Nâng cao
- Câu 3.36 trang 146 sách bài tập Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao