Câu 3.25 trang 89 sách bài tập Đại số và Giải tích 11 Nâng cao


Cho dãy số

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(({u_n})\) xác định bởi

\({u_1} = 1\) và \({u_{n + 1}} = {u_n} + 7\) với mọi \(n \ge 1.\)

LG a

Hãy tính \({u_2},{u_4}\) và \({u_6}.\)

Lời giải chi tiết:

\(\eqalign{
& {u_2} = 8 \cr 
& {u_4} = 22 \cr 
& {u_6} = 36 \cr} \)

LG b

Chứng minh rằng \({u_n} = 7n - 6\)  với mọi \(n \ge 1.\)

Lời giải chi tiết:

Ta sẽ chứng minh

\({u_n} = 7n - 6\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)

với mọi \(n \ge 1,\) bằng phương pháp quy nạp.

Với \(n = 1,\)  ta có \({u_1} = 1 = 7.1 - 6.\) Như vậy, (1) đúng khi  \(n = 1.\)

Giả sử đã có (1) đúng khi \(n = k,k \in N^*,\) ta sẽ chứng minh nó cũng đúng khi \(n = k = 1.\)

Thật vậy, từ hệ thức xác định dãy số \(({u_n})\) và giả thiết quy nạp ta có

\({u_{k + 1}} = {u_k} + 7 = 7.k- 6 + 7 = 7.(k + 1) - 6\)

Từ các chứng minh trên suy ra ta có (1) đúng với mọi \(n \ge 1.\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.