Câu 3.12 trang 87 sách bài tập Đại số và Giải tích 11 Nâng cao


Cho dãy số

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {5.4^{n - 1}} + 3\)

LG a

Chứng minh rằng \({u_{n + 1}} = 4{u_n} - 9\) với mọi \(n \ge 1\)

Lời giải chi tiết:

Ta có \({u_{n + 1}} = {5.4^{n - 1}} + 3 = {4.5.4^{n + 1}} + 3\)

           \( = 4.\left( {{{5.4}^{n - 1}} + 3} \right) - 9 = 4{u_n} - 9\left( {\forall n \ge 1} \right)\)

LG b

Dựa vào kết qủa của phần a), hãy cho dãy số \(\left( {{u_n}} \right)\) bởi hệ thức truy hồi

Lời giải chi tiết:

Theo công thức xác định \({u_n},\) ta có \({u_1} = {5.4^{1 - 1}} + 3 = 8.\)Vì thế kết hợp với kết quả của phần a) suy ra có thể cho dãy số \(\left( {{u_n}} \right)\) bởi

 \({u_1} = 8\) và \({u_{n + 1}} = 4{u_n} - 9\) với mọi \(n \ge 1\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí