Câu 3.24 trang 89 sách bài tập Đại số và Giải tích 11 Nâng cao


Cho dãy số

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(({v_n})\) xác định bởi

\({v_1} = 1\) và \({v_{n + 1}} =  - {3 \over 2}v_n^2 + {5 \over 2}{v_n} + 1\) với mọi \(n \ge 1.\)

LG a

Hãy tính \({v_2},{v_3}\) và \({v_4}.\)

Lời giải chi tiết:

Ta có 

\(\eqalign{
& {v_2} = - {3 \over 2}v_1^2 + {5 \over 2}{v_1} + 1 = - {3 \over 2} + {5 \over 2} + 1 = 2 \cr 
& {v_3} = - {3 \over 2}v_2^2 + {5 \over 2}{v_2} + 1\cr&\;\;\;\; = - {3 \over 2} \times {2^2} + {5 \over 2} \times 2 + 1 = 0 \cr 
& {v_4} = - {3 \over 2}v_3^2 + {5 \over 2}{v_3} + 1\cr&\;\;\;\;= - {3 \over 2} \times {0^2} + {5 \over 2} \times 0 + 1 = 1 \cr} \)

LG b

Chứng minh rằng \({v_n} = {v_{n + 3}}\)  với mọi \(n \ge 1.\)

Lời giải chi tiết:

Ta sẽ chứng minh \({v_n} = {v_{n + 3}}\) với mọi \(n \ge 1,\) bằng phương pháp quy nạp.

Từ giả thiết của bài ra và kết quả của phần a) ta có \({v_1} = {v_4}.\) Như vậy, ta có đẳng thức cần chứng minh khi \(n = 1.\)

Giả sử đã có đẳng thức nói trên khi \(n = k,k \in N^*,\) ta sẽ chứng minh ta cũng có đẳng thức đó khi \(n = k + 1.\)

Thật vậy, từ hệ thức xác định dãy số \(({v_n})\) và giả thiết quy nạp ta có

\({v_{k + 4}} =  - {3 \over 2}v_{k + 3}^2 + {5 \over 2}{v_{k + 3}} + 1 \)

         \(=  - {3 \over 2}v_k^2 + {5 \over 2}{v_k} + 1 = {v_{k + 1}}\)

Từ các chứng minh trên suy ra ta có \({v_n} = {v_{n + 3}}\) với mọi \(n \ge 1.\)

 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2. Dãy số

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.