Câu 2.8 trang 71 sách bài tập Giải tích 12 Nâng cao


Đơn giản hóa biểu thức

Lựa chọn câu để xem lời giải nhanh hơn

Đơn giản hóa biểu thức

LG a

\(\root 3 \of {\sqrt {{x^6}{y^{12}}} }  - {\left( {\root 5 \of {x{y^2}} } \right)^5}\)

Lời giải chi tiết:

\(\root 3 \of {\sqrt {{x^6}{y^{12}}} }  - {\left( {\root 5 \of {x{y^2}} } \right)^5}\)

\(=\root 6 \of {{x^6}{y^{12}}}  - x{y^2} = |x|{y^2} - x{y^2}\)

bằng 0 nếu \(x \ge 0\) ; bằng \( - 2x{y^2}\) nếu \(x < 0\)

LG b

\({{{a^{{3 \over 4}}}b + a{b^{{3 \over 4}}}} \over {\root 3 \of a  + \root 3 \of b }}\)

Lời giải chi tiết:

\({{{a^{{3 \over 4}}}b + a{b^{{3 \over 4}}}} \over {\root 3 \of a  + \root 3 \of b }}={{ab\left( {\root 3 \of a  + \root 3 \of b } \right)} \over {\root 3 \of a  + \root 3 \of b }} = ab\)

LG c

\({{a - 1} \over {{a^{{3 \over 4}}} + {a^{{1 \over 2}}}}} \times {{\sqrt a  + \root 4 \of a } \over {\sqrt a  + 1}} \times {a^{{1 \over 4}}} + 1\) 

Lời giải chi tiết:

\(\sqrt a \)

LG d

\(\left( {{1 \over {m + \sqrt 2 }} - {{{m^2} + 4} \over {{m^3} + 2\sqrt 2 }}} \right) \times \left( {{m \over 2} - {1 \over {\sqrt 2 }} + {1 \over m}} \right)\)

Lời giải chi tiết:

\({{ - \sqrt 2 } \over {2m}}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí