Câu 2.4 trang 70 sách bài tập Giải tích 12 Nâng cao


Hãy chứng minh các tính chất sau đây của căn bậc n dựa vào tính chất của lũy thừa với số mũ nguyên dương:

Lựa chọn câu để xem lời giải nhanh hơn

Hãy chứng minh các tính chất sau đây của căn bậc n dựa vào tính chất của lũy thừa với số mũ nguyên dương:

LG a

Cho n là một số nguyên dương, k là một số nguyên. Khi đó, với hai số không âm a và b, ta có

1)  \(\root n \of {ab}  = \root n \of a .\root n \of b \)

2) \(\root n \of {{a \over b}}  = {{\root n \of a } \over {\root n \of b }}\)                   \(\left( {b \ne 0} \right)\)

3) \(\root n \of {\root k \of a }  = \root {nk} \of a \)               \(\left( {k > 0} \right)\)

4) \(\root n \of a  = \root {nk} \of {{a^k}} \)                 \(\left( {k > 0} \right)\)

5) \({\root {n} \of {a^k }={ \left( {\root n \of a } \right)} ^k}\)       \((a \ne 0\) nếu \(k \le 0)\)

Lời giải chi tiết:

1) Lũy thừa bậc n hai vế ta được: \(ab=ab\) (luôn đúng)

2) Lũy thừa bậc n hai vế ta được: \({a \over b} = {a \over b}\) (luôn đúng)

3) Lũy thừa bậc nk hai vế ta được: \(a=a\) (luôn đúng)

4) Lũy thừa bậc nk hai vế ta được: \(a^k=a^k\) (luôn đúng)

5) Sử dụng 1) khi a = b và quy nạp theo k

LG b

Đối với hai số a, b tùy ý mà  \(0 \le a \le b\) và n nguyên dương, ta có

  \(\root n \of a  < \root n \of b \)

Lời giải chi tiết:

Do \(0 \le a \le b\) nên \(\root n \of a  \ge 0;\root n \of b  > 0\)

Giả sử \(\root n \of a  \ge \root n \of b \), suy ra \({\left( {\root n \of a } \right)^n} \ge {\left( {\root n \of b } \right)^n}\) vì n > 0, hay \(a \ge b\). Điều này mâu thuẫn với giải thiết a < b.

Vậy  \(\root n \of a  < \root n \of b \)

Loigiaihaycom

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài