Bài 48 trang 82 Vở bài tập toán 9 tập 2


Giải Bài 48 trang 82 VBT toán 9 tập 2. Tìm hai số u và v trong mỗi trường hợp sau: a) Biết u + v = 12, uv = 28 và u > v...

Tổng hợp đề thi giữa kì 2 lớp 9 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Lựa chọn câu để xem lời giải nhanh hơn

Tìm hai số u và v trong mỗi trường hợp sau:

LG a

Biết u + v = 12, uv = 28 và u > v

Phương pháp giải:

Ta sử dụng: Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\))

Lời giải chi tiết:

Hai số phải tìm là hai nghiệm của phương trình \({x^2} - 12x + 28 = 0\)

Phương trình trên có \(\Delta ' = {\left( { - 6} \right)^2} - 1.28 = 8 > 0 \)\(\Rightarrow \sqrt {\Delta '}  = 2\sqrt 2 \)  nên có hai nghiệm \({x_1} = 6 + 2\sqrt 2 ;\) \({x_2} = 6 - 2\sqrt 2\)

Vì \(u > v\) nên phải chọn \(u = 6 + 2\sqrt 2 ;v = 6 - 2\sqrt 2 \) .

Quảng cáo
decumar

LG b

u + v = 3, uv = 6 

Phương pháp giải:

Ta sử dụng: Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\))

Lời giải chi tiết:

Hai số phải tìm là hai nghiệm của phương trình \({x^2} - 3x + 6 = 0\)

Phương trình trên có \(\Delta  = {( - 3)^2} - 4.1.6 =  - 15 < 0\)  nên phương trình vô nghiệm.

Vậy không có hai số \(u,v\) thỏa mãn yêu cầu đề bài.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K9 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com, cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.