Bài 46 trang 81 Vở bài tập toán 9 tập 2


Giải Bài 46 trang 81 VBT toán 9 tập 2. Giải các phương trình trùng phương:a) 3x^4-12x^2+9=0;...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình trùng phương:

LG a

\(3{x^4} - 12{x^2} + 9 = 0\)

Phương pháp giải:

+)  Phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\,\,(a \ne 0)\)

+) Cách giải: Đặt ẩn phụ \(t = {x^2}(t \ge 0)\) để đưa phương trình về phương trình bậc hai:  \(a{t^2} + bt + c = 0(a \ne 0).\)

Lời giải chi tiết:

Đặt \(t = {x^2}(t \ge 0)\), ta được phương trình \(3{t^2} - 12t + 9 = 0\)

Phương trình trên có \(a + b + c = 3 + \left( { - 12} \right) + 9 = 0\) nên có hai nghiệm \(t = 1;t = 3\) (thỏa mãn)

+ Với \(t = 1 \Rightarrow {x^2} = 1 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\)

+ Với \(t = 3 \Rightarrow {x^2} = 3 \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 3 \\x =  - \sqrt 3 \end{array} \right.\)

Vậy phương trình đã cho có nghiệm \(x = 1;x =  - 1;x = \sqrt 3 ;x =  - \sqrt 3 \).

LG b

\(2{x^4} + 3{x^2} - 2 = 0\)

Phương pháp giải:

+)  Phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\,\,(a \ne 0)\)

+) Cách giải: Đặt ẩn phụ \(t = {x^2}(t \ge 0)\) để đưa phương trình về phương trình bậc hai:  \(a{t^2} + bt + c = 0(a \ne 0).\)

Lời giải chi tiết:

Đặt \(t = {x^2};t \ge 0\), ta có \(2{t^2} + 3t - 2 = 0\)

Phương trình trên có \(\Delta  = {3^2} - 4.2.\left( { - 2} \right) = 25 > 0 \)\(\Rightarrow \sqrt \Delta   = 5\)

\({t_1} = \dfrac{{ - 3 + 5}}{{2.2}} = \dfrac{1}{2}\left( N \right);\) \({t_2} = \dfrac{{ - 3 - 5}}{{2.2}} =  - 2\left( L \right)\)

Với \(t = {t_1} = \dfrac{1}{2}\) ta có \({x^2} = \dfrac{1}{2}\)\( \Leftrightarrow x =  \pm \dfrac{{\sqrt 2 }}{2}\)

Vậy phương trình có nghiệm \(x = \dfrac{{\sqrt 2 }}{2};\)\(x =  - \dfrac{{\sqrt 2 }}{2}\) .

LG c

\({x^4} + 5{x^2} + 1 = 0\) 

Phương pháp giải:

+)  Phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\,\,(a \ne 0)\)

+) Cách giải: Đặt ẩn phụ \(t = {x^2}(t \ge 0)\) để đưa phương trình về phương trình bậc hai:  \(a{t^2} + bt + c = 0(a \ne 0).\)

Lời giải chi tiết:

Đặt \(t = {x^2}(t \ge 0)\), ta được phương trình \({t^2} + 5t + 1 = 0\)

Phương trình trên có \(\Delta  = {5^2} - 4.1.1 = 21 > 0\) nên có nghiệm \(\left[ \begin{array}{l}t = \dfrac{{ - 5 + \sqrt {21} }}{2} < 0\left( L \right)\\t = \dfrac{{ - 5 - \sqrt {21} }}{2} < 0\,\left( L \right)\end{array} \right.\)

Vậy phương trình đã cho vô nghiệm

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài