Bài 44 trang 80 Vở bài tập toán 9 tập 2


Giải Bài 44 trang 80 VBT toán 9 tập 2. Giải các phương trình (bằng cách đưa về phương trình tích):...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình (bằng cách đưa về phương trình tích):

LG a

\(1,2{x^3} - {x^2} - 0,2x = 0\)

Phương pháp giải:

Biến đổi đưa về dạng phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)

Giải chi tiết:

\(1,2{x^3} - {x^2} - 0,2x = 0\)

\(\begin{array}{l} \Leftrightarrow x\left( {1,2{x^2} - x - 0,2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\1,2{x^2} - x - 0,2 = 0\,\,\left( * \right)\end{array} \right.\end{array}\)

Phương trình (*) có \(a + b + c = 1,2 + \left( { - 1} \right) + \left( { - 0,2} \right) = 0\) nên có hai nghiệm \(x = 1;x = \dfrac{{ - 0,2}}{{1,2}} =  - \dfrac{1}{6}\)

Vậy phương trình đã cho có ba nghiệm \(x = 0;x = 1;x =  - \dfrac{1}{6}.\)

LG b

\(5{x^3} - {x^2} - 5x + 1 = 0\)  

Phương pháp giải:

Biến đổi đưa về dạng phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)

Giải chi tiết:

\(5{x^3} - {x^2} - 5x + 1 = 0\)

\(\begin{array}{l} \Leftrightarrow {x^2}\left( {5x - 1} \right) - \left( {5x - 1} \right) = 0\\ \Leftrightarrow \left( {{x^2} - 1} \right)\left( {5x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 1 = 0\\5x - 1 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\\x = \dfrac{1}{5}\end{array} \right.\end{array}\)

Phương trình có ba nghiệm \(x =  - 1;x = 1;x = \dfrac{1}{5}.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài