Bài 42 trang 78 Vở bài tập toán 9 tập 2


Giải Bài 42 trang 78 VBT toán 9 tập 2. Cho phương trình x^2-x-2=0 a) Giải phương trình...

Tổng hợp đề thi học kì 2 lớp 9 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Lựa chọn câu để xem lời giải nhanh hơn

Cho phương trình \({x^2} - x - 2 = 0\)

LG a

Giải phương trình

Phương pháp giải:

Giải phương trình bằng cách sử dụng

+) Xét phương trình bậc hai: \(a{x^2} + bx + c = 0\,(a \ne 0).\)

 Nếu phương trình có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} =  - 1,\) nghiệm kia là \({x_2} =  - \dfrac{c}{a}.\)

Giải chi tiết:

Xét phương trình \({x^2} - x - 2 = 0\) có \(a - b + c = 1 - \left( { - 1} \right) + \left( { - 2} \right) = 0\) nên có hai nghiệm \({x_1} =  - 1;{x_2} = 2.\)

LG b

Vẽ hai đồ thị: \(y = {x^2}\) và \(y = x + 2\) trong cùng một hệ trục tọa độ

Phương pháp giải:

Lập bảng giá trị rồi vẽ hai đồ thị hàm số \(y = {x^2};y = x + 2\)

Giải chi tiết:

(h17)

  

LG c

Chứng tỏ rằng hai nghiệm tìm được trong câu a) là hoành độ của các giao điểm của hai đồ thị. 

Phương pháp giải:

Thay hai nghiệm tìm được ở câu a) vào mỗi hàm số để so sánh các giá trị của \(y.\)

Giải chi tiết:

+ Thay \(x =  - 1\) vào đẳng thức \(y = {x^2}\) ta được \(y = {\left( { - 1} \right)^2} = 1\). Điều đó chứng tỏ điểm \(A\left( { - 1;1} \right)\) thuộc đồ thị  của hàm số \(y = {x^2}.\)

Tương tự thay \(x =  - 1\) vào đẳng thức \(y = x + 2\) ta được \(y =  - 1 + 2 = 1\). Điều đó chứng tỏ điểm \(A\left( { - 1;1} \right)\) thuộc đồ thị của hàm số \(y = x + 2.\)

Vậy \(A\left( {1; - 1} \right)\) là giao điểm của hai đồ thị hàm số và nghiệm \(x =  - 1\) là hoành độ của A.

+Tương tự thay \(x = 2\) vào hai đẳng thức \(y = {x^2}\) và \(y = x + 2\) ta đều được \(y = 4\). Điều đó chứng tỏ điểm \(B\left( {2;4} \right)\) thuộc đồ thị của hai hàm số \(y = x + 2\) và \(y = {x^2}.\)

Vậy \(B\left( {2;4} \right)\) là giao điểm của hai đồ thị hàm số và nghiệm \(x = 2\) là hoành độ của B.

Loigiaihay.com


Bình chọn:
3.9 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K9 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.